Search results
Results from the WOW.Com Content Network
The alkaline fuel cell (AFC), also known as the Bacon fuel cell after its British inventor, Francis Thomas Bacon, is one of the most developed fuel cell technologies. Alkaline fuel cells consume hydrogen and pure oxygen, to produce potable water, heat, and electricity. They are among the most efficient fuel cells, having the potential to reach 70%.
English: Department of Energy's Energy Efficiency and Renewable Energy Fuel Cell Technologies Program Fuel cell comparison chart. This shows a summary of the different types of fuel cells. Materials on the EERE Web site are in the public domain.
A block diagram of a fuel cell. Design features in a fuel cell include: The electrolyte substance, which usually defines the type of fuel cell, and can be made from a number of substances like potassium hydroxide, salt carbonates, and phosphoric acid. [18] The most common fuel that is used is hydrogen.
Example of cycling between fuel and exhaust in the C-H-O ternary diagram. One useful way to depict the cycling between SOFC and SOEC mode of the rSOC operation with carbonaceous reactants is the C-H-O ternary diagram. [6] Each point in the diagram represents a gas mixture with a different number of carbon, hydrogen or oxygen atoms.
Diagram of a phosphoric acid fuel cell. Phosphoric acid fuel cells (PAFC) are a type of fuel cell that uses liquid phosphoric acid as an electrolyte. They were the first fuel cells to be commercialized. Developed in the mid-1960s and field-tested since the 1970s, they have improved significantly in stability, performance, and cost.
Block diagram of a fuel cell. Source I (Paulsmith99 ) created this work entirely by myself, based on the original png version. Date 17:35, 25 June 2010 (UTC) Author Paulsmith99 Permission (Reusing this file) See below. Other versions Fuel Cell Block Diagram.png
The planar fuel cell design geometry is the typical sandwich type geometry employed by most types of fuel cells, where the electrolyte is sandwiched in between the electrodes. SOFCs can also be made in tubular geometries where either air or fuel is passed through the inside of the tube and the other gas is passed along the outside of the tube.
Proton-exchange membrane fuel cells (PEMFC), also known as polymer electrolyte membrane (PEM) fuel cells, are a type of fuel cell being developed mainly for transport applications, as well as for stationary fuel-cell applications and portable fuel-cell applications. Their distinguishing features include lower temperature/pressure ranges (50 to ...