Search results
Results from the WOW.Com Content Network
An action of a topological group G on a topological space X is a group action of G on X such that the corresponding function G × X → X is continuous. Likewise, a representation of a topological group G on a real or complex topological vector space V is a continuous action of G on V such that for each g ∈ G, the map v ↦ gv from V to ...
Topological space; Topological property; Open set, closed set. Clopen set; Closure (topology) Boundary (topology) Dense (topology) G-delta set, F-sigma set; closeness (mathematics) neighbourhood (mathematics) Continuity (topology) Homeomorphism; Local homeomorphism; Open and closed maps; Germ (mathematics) Base (topology), subbase; Open cover ...
In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space.
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
In mathematics, a topological group G is a group that is also a topological space such that the group multiplication G × G→G and the inverse operation G→G are continuous maps. Subcategories This category has the following 2 subcategories, out of 2 total.
In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group.
A profinite group is a topological group that is isomorphic to the inverse limit of an inverse system of discrete finite groups. [3] In this context, an inverse system consists of a directed set (,), an indexed family of finite groups {:}, each having the discrete topology, and a family of homomorphisms {:,,} such that is the identity map on and the collection satisfies the composition ...
In algebraic topology, the fundamental group (,) of a pointed topological space (,) is defined as the group of homotopy classes of loops based at .This definition works well for spaces such as real and complex manifolds, but gives undesirable results for an algebraic variety with the Zariski topology.