Search results
Results from the WOW.Com Content Network
In philosophy of science, the Duhem–Quine thesis, also called the Duhem–Quine problem, says that unambiguous falsifications of a scientific hypothesis are impossible, because an empirical test of the hypothesis requires one or more background assumptions. Rather than disproving the main hypothesis, the blame can be placed on one of the ...
The hypothesis of Andreas Cellarius, showing the planetary motions in eccentric and epicyclical orbits. A hypothesis (pl.: hypotheses) is a proposed explanation for a phenomenon. A scientific hypothesis must be based on observations and make a testable and reproducible prediction about reality, in a process beginning with an educated guess or ...
For a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. In contrast, Conjectures are statements which cannot necessarily be empirically tested. The main article for this category is Hypothesis .
The success of the Church–Turing thesis prompted variations of the thesis to be proposed. For example, the physical Church–Turing thesis states: "All physically computable functions are Turing-computable." [54]: 101 The Church–Turing thesis says nothing about the efficiency with which one model of computation can simulate another.
An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...
The thesis proposes that some objects in the external environment can be part of a cognitive process and in that way function as extensions of the mind itself. Examples of such objects are written calculations, a diary, or a PC; in general, it concerns objects that store information. The hypothesis considers the mind to encompass every level of ...
This is the problem of induction. Suppose we want to put the hypothesis that all swans are white to the test. We come across a white swan. We cannot validly argue (or induce) from "here is a white swan" to "all swans are white"; doing so would require a logical fallacy such as, for example, affirming the consequent. [3]
The Riemann hypothesis is equivalent to many other conjectures about the rate of growth of other arithmetic functions aside from μ(n). A typical example is Robin's theorem, [10] which states that if σ(n) is the sigma function, given by = then