enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Geothermal gradient - Wikipedia

    en.wikipedia.org/wiki/Geothermal_gradient

    Earth cutaway from core to exosphere Geothermal drill machine in Wisconsin, USA. Temperature within Earth increases with depth. Highly viscous or partially molten rock at temperatures between 650 and 1,200 °C (1,200 and 2,200 °F) are found at the margins of tectonic plates, increasing the geothermal gradient in the vicinity, but only the outer core is postulated to exist in a molten or fluid ...

  3. Pressure-temperature-time path - Wikipedia

    en.wikipedia.org/wiki/Pressure-temperature-time_path

    [1] [39] It works on the temperature variation of the earth crust over time based on rate of heat transfer and diffusion along the disturbed geothermal gradient (normal heat distribution in the ground). [1] [2] Thermal modeling does not give the actual geological time. [1] However, it provides accurate estimation of the duration of the thermal ...

  4. Lower mantle - Wikipedia

    en.wikipedia.org/wiki/Lower_mantle

    As a result, the lower mantle's temperature gradient as a function of depth is approximately adiabatic. [1] Calculation of the geothermal gradient observed a decrease from 0.47 kelvins per kilometre (0.47 °C/km; 1.4 °F/mi) at the uppermost lower mantle to 0.24 kelvins per kilometre (0.24 °C/km; 0.70 °F/mi) at 2,600 kilometres (1,600 mi).

  5. Temperature gradient - Wikipedia

    en.wikipedia.org/wiki/Temperature_gradient

    A temperature gradient is a physical quantity that describes in which direction and at what rate the temperature changes the most rapidly around a particular location. The temperature spatial gradient is a vector quantity with dimension of temperature difference per unit length. The SI unit is kelvin per meter (K/m).

  6. Geothermal energy - Wikipedia

    en.wikipedia.org/wiki/Geothermal_energy

    Outside of the seasonal variations, the geothermal gradient of temperatures through the crust is 25–30 °C (77–86 °F) per km of depth in most of the world. The conductive heat flux averages 0.1 MW/km 2. These values are much higher near tectonic plate boundaries where the crust is thinner.

  7. Earth's crust - Wikipedia

    en.wikipedia.org/wiki/Earth's_crust

    Continental crust is a tertiary crust, formed at subduction zones through recycling of subducted secondary (oceanic) crust. [17] The average age of Earth's current continental crust has been estimated to be about 2.0 billion years. [20] Most crustal rocks formed before 2.5 billion years ago are located in cratons.

  8. How long it really takes to fall through the Earth - AOL

    www.aol.com/news/long-really-takes-fall-earth...

    The original calculations assumed that the Earth has the same density throughout - and the gravitational force changes as you approach the center, much like the weight of a spring that bounces up ...

  9. Earth's internal heat budget - Wikipedia

    en.wikipedia.org/wiki/Earth's_internal_heat_budget

    Thus, about 99% of Earth's internal heat loss at the surface is by conduction through the crust, and mantle convection is the dominant control on heat transport from deep within the Earth. Most of the heat flow from the thicker continental crust is attributed to internal radiogenic sources; in contrast the thinner oceanic crust has only 2% ...