Search results
Results from the WOW.Com Content Network
For a bacterium containing a single chromosome, a genome project will aim to map the sequence of that chromosome. For the human species, whose genome includes 22 pairs of autosomes and 2 sex chromosomes, a complete genome sequence will involve 46 separate chromosome sequences. The Human Genome Project is a well known example of a genome project ...
There are two distinctive mapping approaches used in the field of genome mapping: genetic maps (also known as linkage maps) [7] and physical maps. [3] While both maps are a collection of genetic markers and gene loci, [8] genetic maps' distances are based on the genetic linkage information, while physical maps use actual physical distances usually measured in number of base pairs.
Comparisons of genome synteny between and within species have provided an opportunity to study evolutionary processes that lead to the diversity of chromosome number and structure in many lineages across the tree of life; [13] [14] early discoveries using such approaches include chromosomal conserved regions in nematodes and yeast, [15] [16 ...
The term morphogenetic field conceptualizes the scientific experimental finding that an embryonic group of cells, for example a forelimb bud, could be transplanted to another part of the embryo and in ongoing individual development still give rise to a forelimb at an odd place of the
The seesaw geometry occurs when a molecule has a steric number of 5, with the central atom being bonded to 4 other atoms and 1 lone pair (AX 4 E 1 in AXE notation). An atom bonded to 5 other atoms (and no lone pairs) forms a trigonal bipyramid with two axial and three equatorial positions, but in the seesaw geometry one of the atoms is replaced ...
This correlation in the case of PG(2, R) can be described geometrically using the model of the real projective plane which is a "unit sphere with antipodes [11] identified", or equivalently, the model of lines and planes through the origin of the vector space R 3. Associate to any line through the origin the unique plane through the origin ...
In geometry, a point is an abstract idealization of an exact position, without size, in physical space, [1] or its generalization to other kinds of mathematical spaces.As zero-dimensional objects, points are usually taken to be the fundamental indivisible elements comprising the space, of which one-dimensional curves, two-dimensional surfaces, and higher-dimensional objects consist; conversely ...
The real line with the point at infinity; it is called the real projective line. In geometry, a point at infinity or ideal point is an idealized limiting point at the "end" of each line. In the case of an affine plane (including the Euclidean plane), there is one ideal point for each pencil of parallel lines of the plane.