Search results
Results from the WOW.Com Content Network
In statistical process control (SPC), the ¯ and R chart is a type of scheme, popularly known as control chart, used to monitor the mean and range of a normally distributed variables simultaneously, when samples are collected at regular intervals from a business or industrial process. [1]
The normal distribution is NOT assumed nor required in the calculation of control limits. Thus making the IndX/mR chart a very robust tool. This is demonstrated by Wheeler using real-world data [4], [5] and for a number of highly non-normal probability distributions.
At about the same time, Makarov, [6] and independently, Rüschendorf [7] solved the problem, originally posed by Kolmogorov, of how to find the upper and lower bounds for the probability distribution of a sum of random variables whose marginal distributions, but not their joint distribution, are known.
Control charts are graphical plots used in production control to determine whether quality and manufacturing processes are being controlled under stable conditions. (ISO 7870-1) [1] The hourly status is arranged on the graph, and the occurrence of abnormalities is judged based on the presence of data that differs from the conventional trend or deviates from the control limit line.
Because frequentist statistics disallows metaprobabilities, [citation needed] frequentists have had to propose new solutions. Cedric Smith and Arthur Dempster each developed a theory of upper and lower probabilities. Glenn Shafer developed Dempster's theory further, and it is now known as Dempster–Shafer theory or Choquet (1953).
13934 and other numbers x such that x ≥ 13934 would be an upper bound for S. The set S = {42} has 42 as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for that S. Every subset of the natural numbers has a lower bound since the natural numbers have a least element (0 or 1, depending on ...
This differs from SPRT by always using zero function as the lower "holding barrier" rather than an actual lower "holding barrier". [1] Also, CUSUM does not require the use of the likelihood function. As a means of assessing CUSUM's performance, Page defined the average run length (A.R.L.) metric ; "the expected number of articles sampled before ...
The rule is often called Chebyshev's theorem, about the range of standard deviations around the mean, in statistics. The inequality has great utility because it can be applied to any probability distribution in which the mean and variance are defined.