Search results
Results from the WOW.Com Content Network
Convergent active margins are the most common type of active margin. Transform active margins are more rare, and occur when an oceanic plate and a continental plate are moving parallel to each other in opposite directions. These transform margins are often characterized by many offshore faults, which causes high degree of relief offshore ...
Map algebra is an algebra for manipulating geographic data, primarily fields.Developed by Dr. Dana Tomlin and others in the late 1970s, it is a set of primitive operations in a geographic information system (GIS) which allows one or more raster layers ("maps") of similar dimensions to produce a new raster layer (map) using mathematical or other operations such as addition, subtraction etc.
In the active transformation (left), a point P is transformed to point P ′ by rotating clockwise by angle θ about the origin of a fixed coordinate system. In the passive transformation (right), point P stays fixed, while the coordinate system rotates counterclockwise by an angle θ about its origin.
A map is a function, as in the association of any of the four colored shapes in X to its color in Y. In mathematics, a map or mapping is a function in its general sense. [1] These terms may have originated as from the process of making a geographical map: mapping the Earth surface to a sheet of paper. [2]
Pages for logged out editors learn more. Contributions; Talk; Active margin
The composition of regular maps is again regular; thus, algebraic varieties form the category of algebraic varieties where the morphisms are the regular maps. Regular maps between affine varieties correspond contravariantly in one-to-one to algebra homomorphisms between the coordinate rings: if f : X → Y is a morphism of affine varieties ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In a covering map the Euler–Poincaré characteristic should multiply by the number of sheets; ramification can therefore be detected by some dropping from that. The z → z n mapping shows this as a local pattern: if we exclude 0, looking at 0 < |z| < 1 say, we have (from the homotopy point of view) the circle mapped to itself by the n-th power map (Euler–Poincaré characteristic 0), but ...