Search results
Results from the WOW.Com Content Network
Sulfuric(IV) acid (United Kingdom spelling: sulphuric(IV) acid), also known as sulfurous (UK: sulphurous) acid and thionic acid, [citation needed] is the chemical compound with the formula H 2 SO 3. Raman spectra of solutions of sulfur dioxide in water show only signals due to the SO 2 molecule and the bisulfite ion, HSO − 3 . [ 2 ]
However, SO 3 added to concentrated sulfuric acid readily dissolves, forming oleum which can then be diluted with water to produce additional concentrated sulfuric acid. [4] Typically, above concentrations of 98.3%, sulfuric acid will undergo a spontaneous decomposition into sulfur trioxide and water H 2 SO 4 ⇌ SO 3 + H 2 O
The oleum is then diluted with water to form concentrated sulfuric acid. H 2 SO 4 + SO 3 → H 2 S 2 O 7 H 2 S 2 O 7 + H 2 O → 2 H 2 SO 4. Directly dissolving SO 3 in water, called the "wet sulfuric acid process", is rarely practiced because the reaction is extremely exothermic, resulting in a hot aerosol of sulfuric acid that requires ...
Sulfur polycations, S 8 2+, S 4 2+ and S 16 2+ are produced when sulfur is reacted with oxidising agents in a strongly acidic solution. [1] The colored solutions produced by dissolving sulfur in oleum were first reported as early as 1804 by C.F. Bucholz, but the cause of the color and the structure of the polycations involved was only ...
Examples of strong acids are hydrochloric acid (), perchloric acid (), nitric acid and sulfuric acid (). A weak acid is only partially dissociated, or is partly ionized in water with both the undissociated acid and its dissociation products being present, in solution, in equilibrium with each other.
Sulfuric acid is known to be abundant in the clouds of Venus, in the form of aerosol droplets. In a biochemistry that used sulfuric acid as a solvent, the alkene group (C=C), with two carbon atoms joined by a double bond, could function analogously to the carbonyl group (C=O) in water-based biochemistry. [43]
The hydrogensulfate ion (HSO − 4), also called the bisulfate ion, is the conjugate base of sulfuric acid (H 2 SO 4). [59] [b] Sulfuric acid is classified as a strong acid; in aqueous solutions it ionizes completely to form hydronium (H 3 O +) and hydrogensulfate (HSO − 4) ions. In other words, the sulfuric acid behaves as a Brønsted ...
An example of this case would be the splitting of hydrochloric acid HCl in water. Since HCl is a strong acid (it splits up to a large extent), its conjugate base (Cl −) will be weak. Therefore, in this system, most H + will be hydronium ions H 3 O + instead of attached to Cl − anions and the conjugate bases will be weaker than water molecules.