Search results
Results from the WOW.Com Content Network
4 bits – (a.k.a. tetrad(e), nibble, quadbit, semioctet, or halfbyte) the size of a hexadecimal digit; decimal digits in binary-coded decimal form 5 bits – the size of code points in the Baudot code, used in telex communication (a.k.a. pentad) 6 bits – the size of code points in Univac Fieldata, in IBM "BCD" format, and in Braille. Enough ...
5.0×10 1 bit/s Positioning system Bit rate for transmissions from GPS satellites [3] 5.6×10 1 bit/s Text data Bit rate for a skilled operator in Morse code [4] 10 3: kbit/s 4×10 3 bit/s Audio data Minimum achieved for encoding recognizable speech (using special-purpose speech codecs) 8×10 3 bit/s Audio data Low bit rate telephone quality 10 ...
The ISQ symbols for the bit and byte are bit and B, respectively.In the context of data-rate units, one byte consists of 8 bits, and is synonymous with the unit octet.The abbreviation bps is often used to mean bit/s, so that when a 1 Mbps connection is advertised, it usually means that the maximum achievable bandwidth is 1 Mbit/s (one million bits per second), which is 0.125 MB/s (megabyte per ...
In telecommunications and computing, bit rate (bitrate or as a variable R) is the number of bits that are conveyed or processed per unit of time. [1]The bit rate is expressed in the unit bit per second (symbol: bit/s), often in conjunction with an SI prefix such as kilo (1 kbit/s = 1,000 bit/s), mega (1 Mbit/s = 1,000 kbit/s), giga (1 Gbit/s = 1,000 Mbit/s) or tera (1 Tbit/s = 1,000 Gbit/s). [2]
In actuality, a 64 kilobyte file is 64 × 1,024 × 8 bits in size and the 64 k circuit will transmit bits at a rate of 64 × 1,000 bit/s, so the amount of time taken to transmit a 64 kilobyte file over the 64 k circuit will be at least (64 × 1,024 × 8)/(64 × 1,000) seconds, which works out to be 8.192 seconds.
Computers usually manipulate bits in groups of a fixed size, conventionally called words. The number of bits in a word is usually defined by the size of the registers in the computer's CPU, or by the number of data bits that are fetched from its main memory in a single operation.
As the bit rate is the product of the symbol rate and the number of bits encoded in each symbol, it is clearly advantageous to increase the latter if the former is fixed. However, for each additional bit encoded in a symbol, the constellation of symbols (the number of states of the carrier) doubles in size.
A PCI-X bus with 66 MHz clock and 64 bits wide can transfer 66 000 000 64-bit words per second, or 4 224 000 000 bit/s = 528 000 000 B/s, which is usually quoted as 528 MB/s. A PC3200 memory on a double data rate bus, transferring 8 bytes per cycle with a clock speed of 200 MHz has a bandwidth of 200 000 000 × 8 × 2 = 3 200 000 000 B/s ...