Search results
Results from the WOW.Com Content Network
The density of the Earth's atmosphere decreases nearly exponentially with altitude. The total mass of the atmosphere is M = ρ A H ≃ 1 kg/cm 2 within a column of one square centimeter above the ground (with ρ A = 1.29 kg/m 3 the atmospheric density on the ground at z = 0 m altitude, and H ≃ 8 km the average atmospheric scale height).
These layers are the troposphere, stratosphere, mesosphere, and thermosphere. The troposphere is the lowest of the four layers and extends from the surface of the Earth to about 11 km (6.8 mi) into the atmosphere, where the tropopause (the boundary between the troposphere stratosphere) is located. The width of the troposphere can vary depending ...
The thermosphere is the second-highest layer of Earth's atmosphere. It extends from the mesopause (which separates it from the mesosphere) at an altitude of about 80 km (50 mi; 260,000 ft) up to the thermopause at an altitude range of 500–1000 km (310–620 mi
The increase in altitude necessary for P or ρ to drop to 1/e of its initial value is called the scale height: H = R T M g 0 {\displaystyle H={\frac {RT}{Mg_{0}}}} where R is the ideal gas constant, T is temperature, M is average molecular weight, and g 0 is the gravitational acceleration at the planet's surface.
These figures should be compared with the temperature and density of Earth's atmosphere plotted at NRLMSISE-00, which shows the air density dropping from 1200 g/m 3 at sea level to 0.125 g/m 3 at 70 km, a factor of 9600, indicating an average scale height of 70 / ln(9600) = 7.64 km, consistent with the indicated average air temperature over ...
The reference value for ρ b for b = 0 is the defined sea level value, ρ 0 = 1.2250 kg/m 3 or 0.0023768908 slug/ft 3. Values of ρ b of b = 1 through b = 6 are obtained from the application of the appropriate member of the pair equations 1 and 2 for the case when h = h b+1. [2]
A typical value is around 5 °C/km, (9 °F/km, 2.7 °F/1,000 ft, 1.5 °C/1,000 ft). ... where water vapor in the air begins to condense. Above that altitude, the ...
The five species model is only usable for entry from low Earth orbit where entry velocity is approximately 7.8 km/s (28,000 km/h; 17,000 mph). For lunar return entry of 11 km/s, [23] the shock layer contains a significant amount of ionized nitrogen and oxygen. The five-species model is no longer accurate and a twelve-species model must be used ...