Search results
Results from the WOW.Com Content Network
In classical mechanics, a gravitational field is a physical quantity. [5] A gravitational field can be defined using Newton's law of universal gravitation. Determined in this way, the gravitational field g around a single particle of mass M is a vector field consisting at every point of a vector pointing directly towards the particle. The ...
Gravimetry is the measurement of the strength of a gravitational field. Gravimetry may be used when either the magnitude of a gravitational field or the properties of matter responsible for its creation are of interest. The study of gravity changes belongs to geodynamics.
Saturn has an intrinsic magnetic field that has a simple, symmetric shape—a magnetic dipole. Its strength at the equator—0.2 gauss (20 μT)—is approximately one twentieth of that of the field around Jupiter and slightly weaker than Earth's magnetic field. [32] As a result, Saturn's magnetosphere is much smaller than Jupiter's. [82]
This formulation is dependent on the objects causing the field. The field has units of acceleration; in SI, this is m/s 2. Gravitational fields are also conservative; that is, the work done by gravity from one position to another is path-independent. This has the consequence that there exists a gravitational potential field V(r) such that
In astrodynamics, the vis-viva equation is one of the equations that model the motion of orbiting bodies.It is the direct result of the principle of conservation of mechanical energy which applies when the only force acting on an object is its own weight which is the gravitational force determined by the product of the mass of the object and the strength of the surrounding gravitational field.
At the Earth's surface, an object whose mass is exactly one kilogram weighs approximately 9.81 newtons, the product of its mass and the gravitational field strength there. The object's weight is less on Mars , where gravity is weaker; more on Saturn , where gravity is stronger; and very small in space, far from significant sources of gravity ...
g is the gravitational field strength v is the velocity of the rocket Then the time-rate of change of the specific energy of the rocket is v ⋅ a {\displaystyle \mathbf {v} \cdot \mathbf {a} } : an amount v ⋅ ( a − g ) {\displaystyle \mathbf {v} \cdot (\mathbf {a} -\mathbf {g} )} for the kinetic energy and an amount v ⋅ g {\displaystyle ...
The minimum speed that must be achieved for a free, non-propelled object to escape from the gravitational influence of a massive body, i.e. to achieve an infinite distance from it; more generally, escape velocity is the speed at which the sum of an object's kinetic energy and gravitational potential energy is equal to zero.