Search results
Results from the WOW.Com Content Network
The numerical 3-d matching problem is problem [SP16] of Garey and Johnson. [1] They claim it is NP-complete, and refer to, [2] but the claim is not proved at that source. The NP-hardness of the related problem 3-partition is done in [1] by a reduction from 3-dimensional matching via 4-partition. To prove NP-completeness of the numerical 3 ...
In computer programming, initialization or initialisation is the assignment of an initial value for a data object or variable. The manner in which initialization is performed depends on the programming language , as well as the type, storage class, etc., of an object to be initialized.
c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also ...
3-dimensional matchings. (a) Input T. (b)–(c) Solutions. In the mathematical discipline of graph theory, a 3-dimensional matching is a generalization of bipartite matching (also known as 2-dimensional matching) to 3-partite hypergraphs, which consist of hyperedges each of which contains 3 vertices (instead of edges containing 2 vertices in a usual graph).
Matrix multiplication is an example of a 2-rank function, because it operates on 2-dimensional objects (matrices). Collapse operators reduce the dimensionality of an input data array by one or more dimensions. For example, summing over elements collapses the input array by 1 dimension.
The lazy initialization technique allows us to do this in just O(m) operations, rather than spending O(m+n) operations to first initialize all array cells. The technique is simply to allocate a table V storing the pairs ( k i , v i ) in some arbitrary order, and to write for each i in the cell T [ k i ] the position in V where key k i is stored ...
B + c 1 · i 1 + c 2 · i 2 + … + c k · i k. For example: int a[2][3]; This means that array a has 2 rows and 3 columns, and the array is of integer type. Here we can store 6 elements they will be stored linearly but starting from first row linear then continuing with second row. The above array will be stored as a 11, a 12, a 13, a 21, a 22 ...
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.