Search results
Results from the WOW.Com Content Network
as one would expect. This is equivalent to the above definition of the 2D mean diameter. However, for historical reasons, the hydraulic radius is defined as the cross-sectional area of a pipe A, divided by its wetted perimeter P, which leads to =, and the hydraulic radius is half of the 2D mean radius. [3]
The greatest length of any of these paths is the diameter of the graph. A central vertex in a graph of radius r is one whose eccentricity is r —that is, a vertex whose distance from its furthest vertex is equal to the radius, equivalently, a vertex v such that ϵ(v) = r.
The Wigner–Seitz radius, named after Eugene Wigner and Frederick Seitz, is the radius of a sphere whose volume is equal to the mean volume per atom in a solid (for first group metals). [1] In the more general case of metals having more valence electrons, r s {\displaystyle r_{\rm {s}}} is the radius of a sphere whose volume is equal to the ...
Since the diameter is twice the radius, the "missing" part of the diameter is (2r − x) in length. Using the fact that one part of one chord times the other part is equal to the same product taken along a chord intersecting the first chord, we find that (2r − x)x = (y / 2) 2. Solving for r, we find the required result.
In this context, a diameter is any chord which passes through the conic's centre. A diameter of an ellipse is any line passing through the centre of the ellipse. [7] Half of any such diameter may be called a semidiameter, although this term is most often a synonym for the radius of a circle or sphere. [8] The longest diameter is called the ...
The radius of the first arc must be chosen large enough to cause all successive arcs to end on the correct side of the next crossing point; however, all sufficiently-large radii work. For two lines, this forms a circle; for three lines on the sides of an equilateral triangle, with the minimum possible radius, it forms a Reuleaux triangle, and ...
In fluid dynamics, Sauter mean diameter (SMD) is an average measure of particle size. It was originally developed by German scientist Josef Sauter in the late 1920s. [1] [2] It is defined as the diameter of a sphere that has the same volume/surface area ratio as a particle of interest. Several methods have been devised to obtain a good estimate ...
The filling radius of real projective space with a metric of constant curvature is a third of its Riemannian diameter, see (Katz, 1983). Equivalently, the filling radius is a sixth of the systole in these cases. The filling radius of the Riemannian circle of length 2π, i.e. the unit circle with the induced Riemannian distance function, equals ...