Ads
related to: connected graphs in graph theorywyzant.com has been visited by 10K+ users in the past month
- Tutors Near You
Expert Tutors, Private Sessions.
Tutors From $25/hr. Try Today.
- Personalized Sessions
Name Your Subject, Find Your Tutor.
Customized 1-On-1 Instruction.
- Our Powerful Online Tool
Interactive Features & Video Chat
Make Learning Easy. Try It Free.
- Choose Your Online Tutor
Review Tutor Profiles, Ratings
And Reviews To Find a Perfect Match
- Tutors Near You
Search results
Results from the WOW.Com Content Network
This graph becomes disconnected when the right-most node in the gray area on the left is removed This graph becomes disconnected when the dashed edge is removed.. In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into two or more ...
A graph with connectivity 4. In graph theory, a connected graph G is said to be k-vertex-connected (or k-connected) if it has more than k vertices and remains connected whenever fewer than k vertices are removed. The vertex-connectivity, or just connectivity, of a graph is the largest k for which the graph is k-vertex-connected.
The strongly connected components of a directed graph form a partition into subgraphs that are themselves strongly connected. It is possible to test the strong connectivity of a graph, or to find its strongly connected components, in linear time (that is, Θ( V + E )).
In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points ) which are connected by edges (also called arcs , links or lines ).
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
In graph theory, a connected graph is k-edge-connected if it remains connected whenever fewer than k edges are removed. The edge-connectivity of a graph is the largest k for which the graph is k-edge-connected. Edge connectivity and the enumeration of k-edge-connected graphs was studied by Camille Jordan in 1869. [1]
In graph theory, a component of an undirected graph is a connected subgraph that is not part of any larger connected subgraph. The components of any graph partition its vertices into disjoint sets, and are the induced subgraphs of those sets. A graph that is itself connected has exactly one component, consisting of the whole graph.
Every connected graph can be uniquely factored into a Cartesian product of prime graphs. proper 1. A proper subgraph is a subgraph that removes at least one vertex or edge relative to the whole graph; for finite graphs, proper subgraphs are never isomorphic to the whole graph, but for infinite graphs they can be. 2.
Ads
related to: connected graphs in graph theorywyzant.com has been visited by 10K+ users in the past month