enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radiation pressure - Wikipedia

    en.wikipedia.org/wiki/Radiation_pressure

    Solar radiation pressure strongly affects comet tails. Solar heating causes gases to be released from the comet nucleus, which also carry away dust grains. Radiation pressure and solar wind then drive the dust and gases away from the Sun's direction. The gases form a generally straight tail, while slower moving dust particles create a broader ...

  3. Poynting–Robertson effect - Wikipedia

    en.wikipedia.org/wiki/Poynting–Robertson_effect

    The Poynting–Robertson effect, also known as Poynting–Robertson drag, named after John Henry Poynting and Howard P. Robertson, is a process by which solar radiation causes a dust grain orbiting a star to lose angular momentum relative to its orbit around the star. This is related to radiation pressure tangential to the grain's motion.

  4. Hill sphere - Wikipedia

    en.wikipedia.org/wiki/Hill_sphere

    The Hill sphere is only an approximation, and other forces (such as radiation pressure or the Yarkovsky effect) can eventually perturb an object out of the sphere. [citation needed] As stated, the satellite (third mass) should be small enough that its gravity contributes negligibly. [6]: p.26ff

  5. Friedmann equations - Wikipedia

    en.wikipedia.org/wiki/Friedmann_equations

    For example, w = 0 describes a matter-dominated universe, where the pressure is negligible with respect to the mass density. From the generic solution one easily sees that in a matter-dominated universe the scale factor goes as a ( t ) ∝ t 2 / 3 {\displaystyle a(t)\propto t^{2/3}} matter-dominated Another important example is the case of a ...

  6. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    The inertial trajectories of particles and radiation in the resulting geometry are then calculated using the geodesic equation. As well as implying local energy–momentum conservation, the EFE reduce to Newton's law of gravitation in the limit of a weak gravitational field and velocities that are much less than the speed of light .

  7. Mass–luminosity relation - Wikipedia

    en.wikipedia.org/wiki/Mass–luminosity_relation

    In the radiation zone gravity is balanced by the pressure on the gas coming from both itself (approximated by ideal gas pressure) and from the radiation. For a small enough stellar mass the latter is negligible and one arrives at T I ∝ M R {\displaystyle T_{I}\varpropto {\frac {M}{R}}} as before.

  8. Cosmological constant - Wikipedia

    en.wikipedia.org/wiki/Cosmological_constant

    The cosmological constant was originally introduced in Einstein's 1917 paper entitled “The cosmological considerations in the General Theory of Reality”. [2] Einstein included the cosmological constant as a term in his field equations for general relativity because he was dissatisfied that otherwise his equations did not allow for a static universe: gravity would cause a universe that was ...

  9. Poynting vector - Wikipedia

    en.wikipedia.org/wiki/Poynting_vector

    In physics, the Poynting vector (or Umov–Poynting vector) represents the directional energy flux (the energy transfer per unit area, per unit time) or power flow of an electromagnetic field. The SI unit of the Poynting vector is the watt per square metre (W/m 2 ); kg/s 3 in base SI units.