Search results
Results from the WOW.Com Content Network
Perfect plasticity is a property of materials to undergo irreversible deformation without any increase in stresses or loads. Plastic materials that have been hardened by prior deformation, such as cold forming, may need increasingly higher stresses to deform further. Generally, plastic deformation is also dependent on the deformation speed, i.e ...
A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection. A property having a ...
When plastic products are recycled, it is highly likely that the additives will be integrated into the new products. Plastic waste, even if it is all of the same polymer type, will contain varying types and amounts of additives. Mixing these together can give a material with inconsistent properties, which can be unappealing to industry.
The Properties of Polyethylene Crystallized Under the Orientation and Pressure Effects of a Pressure Capillary Viscometer, Journal of Applied Polymer Science vol. 14, pp. 2305–2317 (1970). Kanamoto, On Ultra-High Tensile by Drawing Single Crystal Mats of High Molecular Weight Polyethylene, Polymer Journal vol. 15, No. 4, pp. 327–329 (1983).
The properties of a CFRP depend on the layouts of the carbon fiber and the proportion of the carbon fibers relative to the polymer. [6] The two different equations governing the net elastic modulus of composite materials using the properties of the carbon fibers and the polymer matrix can also be applied to carbon fiber reinforced plastics. [7]
Plastic deformation of a thin metal sheet. Flow plasticity is a solid mechanics theory that is used to describe the plastic behavior of materials. [1] Flow plasticity theories are characterized by the assumption that a flow rule exists that can be used to determine the amount of plastic deformation in the material.
The elastic response of viscoplastic materials can be represented in one-dimension by Hookean spring elements. Rate-dependence can be represented by nonlinear dashpot elements in a manner similar to viscoelasticity. Plasticity can be accounted for by adding sliding frictional elements as shown in Figure 1. [2]
As a 3D printing filament, as well as in the 3D printing plastic PETG (polyethylene terephthalate glycol). In 3D printing PETG has become a popular material [20] - used for high-end applications like surgical fracture tables [21] to automotive and aeronautical sectors, among other industrial applications. [22]