Search results
Results from the WOW.Com Content Network
The rod, perch, or pole (sometimes also lug) is a surveyor's tool [1] and unit of length of various historical definitions. In British imperial and US customary units, it is defined as 16 + 1 ⁄ 2 feet, equal to exactly 1 ⁄ 320 of a mile, or 5 + 1 ⁄ 2 yards (a quarter of a surveyor's chain), and is exactly 5.0292 meters.
Absorbed dose received per unit of time Gy/s L 2 T −3: Action: S: Momentum of particle multiplied by distance travelled J/Hz L 2 M T −1: scalar Angular acceleration: ω a: Change in angular velocity per unit time rad/s 2: T −2: Area: A: Extent of a surface m 2: L 2: extensive, bivector or scalar Area density: ρ A: Mass per unit area kg ...
Quantities, Units and Symbols in Physical Chemistry, also known as the Green Book, is a compilation of terms and symbols widely used in the field of physical chemistry. It also includes a table of physical constants , tables listing the properties of elementary particles , chemical elements , and nuclides , and information about conversion ...
newton meter squared per kilogram squared (N⋅m 2 /kg 2) shear modulus: pascal (Pa) or newton per square meter (N/m 2) gluon field strength tensor: inverse length squared (1/m 2) acceleration due to gravity: meters per second squared (m/s 2), or equivalently, newtons per kilogram (N/kg) magnetic field strength
The list given in ISO 31-8:1992 was quoted from the 1998 IUPAC "Green Book" Quantities, Units and Symbols in Physical Chemistry and adds in some cases in parentheses the Latin name for information, where the standard symbol has no relation to the English name of the element. Since the 1992 edition of the standard was published, some elements ...
Quantity Unit Remarks Name Symbol Name Symbol Definition Force: F: newton: N 1 N = 1 kg·m/s 2: Unit named after Isaac Newton: Moment of force, Torque: M, : N·m 1 N·m = 1 kg·m 2 /s 2: The unit is dimensionally equivalent to the units of energy, the joule; but the joule should not be used as an alternative for the newton metre.
It can be adapted to similar equations e.g. F = ma, v = fλ, E = mcΔT, V = π r 2 h and τ = rF sinθ. When a variable with an exponent or in a function is covered, the corresponding inverse is applied to the remainder, i.e. = and = .
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...