Search results
Results from the WOW.Com Content Network
is used for the series, and, if it is convergent, to its sum. This convention is similar to that which is used for addition: a + b denotes the operation of adding a and b as well as the result of this addition, which is called the sum of a and b. Any series that is not convergent is said to be divergent or to diverge.
In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series.It depends on the quantity | |, where are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one.
While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.
In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit. If a series converges, the individual terms of the series must approach zero.
In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.
In calculus, the Abel–Dini–Pringsheim theorem is a convergence test which constructs from a divergent series a series that diverges more slowly, and from convergent series one that converges more slowly. [1]: §IX.39 Consequently, for every convergence test based on a particular series there is a series about which the test is inconclusive.
The more general class of p-series, =, exemplifies the possible results of the test: If p ≤ 0, then the nth-term test identifies the series as divergent. If 0 < p ≤ 1, then the nth-term test is inconclusive, but the series is divergent by the integral test for convergence.
The addition of two divergent series may yield a convergent series: for instance, the addition of a divergent series with a series of its terms times will yield a series of all zeros that converges to zero. However, for any two series where one converges and the other diverges, the result of their addition diverges.