enow.com Web Search

  1. Ads

    related to: how to calculate sampling weights in math worksheets pdf cubes 1 5 x 15 18

Search results

  1. Results from the WOW.Com Content Network
  2. Horvitz–Thompson estimator - Wikipedia

    en.wikipedia.org/wiki/Horvitz–Thompson_estimator

    In statistics, the Horvitz–Thompson estimator, named after Daniel G. Horvitz and Donovan J. Thompson, [1] is a method for estimating the total [2] and mean of a pseudo-population in a stratified sample by applying inverse probability weighting to account for the difference in the sampling distribution between the collected data and the target population.

  3. Inverse distance weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse_distance_weighting

    Inverse Distance Weighting as a sum of all weighting functions for each sample point. Each function has the value of one of the samples at its sample point and zero at every other sample point. Inverse distance weighting (IDW) is a type of deterministic method for multivariate interpolation with a known scattered set of points.

  4. Inverse probability weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse_probability_weighting

    Inverse probability weighting is a statistical technique for estimating quantities related to a population other than the one from which the data was collected. Study designs with a disparate sampling population and population of target inference (target population) are common in application. [1]

  5. Weight function - Wikipedia

    en.wikipedia.org/wiki/Weight_function

    A weight function is a mathematical device used when performing a sum, integral, or average to give some elements more "weight" or influence on the result than other elements in the same set. The result of this application of a weight function is a weighted sum or weighted average .

  6. Design effect - Wikipedia

    en.wikipedia.org/wiki/Design_effect

    Normalized (convex) weights is a set of weights that form a convex combination, i.e., each weight is a number between 0 and 1, and the sum of all weights is equal to 1. Any set of (non negative) weights can be turned into normalized weights by dividing each weight with the sum of all weights, making these weights normalized to sum to 1.

  7. Weighted arithmetic mean - Wikipedia

    en.wikipedia.org/wiki/Weighted_arithmetic_mean

    In normal unweighted samples, the N in the denominator (corresponding to the sample size) is changed to N − 1 (see Bessel's correction). In the weighted setting, there are actually two different unbiased estimators, one for the case of frequency weights and another for the case of reliability weights.

  1. Ads

    related to: how to calculate sampling weights in math worksheets pdf cubes 1 5 x 15 18