Search results
Results from the WOW.Com Content Network
# set terminal svg enhanced size 875 1250 fname "Times" fsize 25 set terminal postscript enhanced portrait dashed lw 1 "Helvetica" 14 set output "bode.ps" # ugly part of something G(w,n) = 0 * w * n + 100000 # 1 / (sqrt(1 + w**(2*n))) dB(x) = 0 + x + 100000 # 20 * log10(abs(x)) P(w) = w * 0 + 200 # -atan(w)*180/pi # Gridlines set grid # Set x axis to logarithmic scale set logscale x 10 set ...
Figures 2-5 further illustrate construction of Bode plots. This example with both a pole and a zero shows how to use superposition. To begin, the components are presented separately. Figure 2 shows the Bode magnitude plot for a zero and a low-pass pole, and compares the two with the Bode straight line plots.
Bode plot illustrating phase margin. In electronic amplifiers, the phase margin (PM) is the difference between the phase lag φ (< 0) and -180°, for an amplifier's output signal (relative to its input) at zero dB gain - i.e. unity gain, or that the output signal has the same amplitude as the input.
In electronics engineering, frequency compensation is a technique used in amplifiers, and especially in amplifiers employing negative feedback.It usually has two primary goals: To avoid the unintentional creation of positive feedback, which will cause the amplifier to oscillate, and to control overshoot and ringing in the amplifier's step response.
Often, data obtained by electrochemical impedance spectroscopy (EIS) is expressed graphically in a Bode plot or a Nyquist plot. Impedance is the opposition to the flow of alternating current (AC) in a complex system. A passive complex electrical system comprises both energy dissipater and energy storage elements.
This makes it impossible for the zero of () at the origin to be realised. The Cauer I form, on the other hand, has a low-pass topology and naturally has a zero at the origin. [ 66 ] However, the Y ( s ) {\displaystyle Y(s)} of this function can be realised as a Cauer II form since the first element extracted is a shunt inductor.
Hendrik Wade Bode (/ ˈ b oʊ d i / BOH-dee, Dutch:; [1] December 24, 1905 – June 21, 1982) [1] was an American engineer, researcher, inventor, author and scientist, of Dutch ancestry. As a pioneer of modern control theory and electronic telecommunications he revolutionized both the content and methodology of his chosen fields of research.
The analysis of unbalanced cases is greatly simplified by the use of the techniques of symmetrical components. An unbalanced system is analysed as the superposition of three balanced systems, each with the positive, negative or zero sequence of balanced voltages.