Search results
Results from the WOW.Com Content Network
The theorem states that the sample rate must be at least twice the bandwidth of the signal to avoid aliasing. In practice, it is used to select band-limiting filters to keep aliasing below an acceptable amount when an analog signal is sampled or when sample rates are changed within a digital signal processing function.
Fig 1: Typical example of Nyquist frequency and rate. They are rarely equal, because that would require over-sampling by a factor of 2 (i.e. 4 times the bandwidth). In signal processing , the Nyquist rate , named after Harry Nyquist , is a value equal to twice the highest frequency ( bandwidth ) of a given function or signal.
Early uses of the term Nyquist frequency, such as those cited above, are all consistent with the definition presented in this article.Some later publications, including some respectable textbooks, call twice the signal bandwidth the Nyquist frequency; [6] [7] this is a distinctly minority usage, and the frequency at twice the signal bandwidth is otherwise commonly referred to as the Nyquist rate.
In the context of, for example, the sampling theorem and Nyquist sampling rate, bandwidth typically refers to baseband bandwidth. In the context of Nyquist symbol rate or Shannon-Hartley channel capacity for communication systems it refers to passband bandwidth. The Rayleigh bandwidth of a simple radar pulse is defined as the inverse of its ...
Plot of sample rates (y axis) versus the upper edge frequency (x axis) for a band of width 1; grays areas are combinations that are "allowed" in the sense that no two frequencies in the band alias to same frequency. The darker gray areas correspond to undersampling with the maximum value of n in the equations of this section.
In the late 1990s, this work was partially extended to cover signals for which the amount of occupied bandwidth was known, but the actual occupied portion of the spectrum was unknown. [3] In the 2000s, a complete theory was developed (see the section Beyond Nyquist below) using compressed sensing.
In communications, the Nyquist ISI criterion describes the conditions which, when satisfied by a communication channel (including responses of transmit and receive filters), result in no intersymbol interference or ISI. It provides a method for constructing band-limited functions to overcome the effects of intersymbol interference.
A Nyquist pulse is one which meets the Nyquist ISI criterion and is important in data transmission. An example of a pulse which meets this condition is the sinc function . The sinc pulse is of some significance in signal-processing theory but cannot be produced by a real generator for reasons of causality.