enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Denaturation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Denaturation_(biochemistry)

    In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]

  3. Cell damage - Wikipedia

    en.wikipedia.org/wiki/Cell_damage

    DNA damage: In human cells, both normal metabolic activities and environmental factors such as ultraviolet light and other radiations can cause DNA damage, resulting in as many as one million individual molecular lesions per cell per day. [5] Membrane damage: Damage to the cell membrane disturbs the state of cell electrolytes, e.g. calcium ...

  4. Hemolysin - Wikipedia

    en.wikipedia.org/wiki/Hemolysin

    Hemolysins or haemolysins are lipids and proteins that cause lysis of red blood cells by disrupting the cell membrane.Although the lytic activity of some microbe-derived hemolysins on red blood cells may be of great importance for nutrient acquisition, many hemolysins produced by pathogens do not cause significant destruction of red blood cells during infection.

  5. Protein folding - Wikipedia

    en.wikipedia.org/wiki/Protein_folding

    Many allergies are caused by the incorrect folding of some proteins because the immune system does not produce the antibodies for certain protein structures. [5] Denaturation of proteins is a process of transition from a folded to an unfolded state. It happens in cooking, burns, proteinopathies, and other contexts. Residual structure present ...

  6. Equilibrium unfolding - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_unfolding

    Furthermore, one can assess whether the folding proceeds according to a two-state unfolding as described above. This can be done with differential scanning calorimetry by comparing the calorimetric enthalpy of denaturation i.e. the area under the peak, A peak {\displaystyle A_{\text{peak}}} to the van 't Hoff enthalpy described as follows:

  7. Protein metabolism - Wikipedia

    en.wikipedia.org/wiki/Protein_metabolism

    They can also be converted into glucose. [4] This glucose can then be converted to triglycerides and stored in fat cells. [5] Proteins can be broken down by enzymes known as peptidases or can break down as a result of denaturation. Proteins can denature in environmental conditions the protein is not made for. [6]

  8. Transmembrane protein - Wikipedia

    en.wikipedia.org/wiki/Transmembrane_protein

    Alpha-helical proteins are present in the inner membranes of bacterial cells or the plasma membrane of eukaryotic cells, and sometimes in the bacterial outer membrane. [5] This is the major category of transmembrane proteins. In humans, 27% of all proteins have been estimated to be alpha-helical membrane proteins. [6]

  9. Membrane transport - Wikipedia

    en.wikipedia.org/wiki/Membrane_transport

    The macromolecules on one side of the membrane can bond preferentially to a certain component of the membrane or chemically modify it. In this way, although the concentration of the solute may actually be different on both sides of the membrane, the availability of the solute is reduced in one of the compartments to such an extent that, for ...