enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann sum - Wikipedia

    en.wikipedia.org/wiki/Riemann_sum

    While not derived as a Riemann sum, taking the average of the left and right Riemann sums is the trapezoidal rule and gives a trapezoidal sum. It is one of the simplest of a very general way of approximating integrals using weighted averages.

  3. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    The variation formula computations above define the principal symbol of the mapping which sends a pseudo-Riemannian metric to its Riemann tensor, Ricci tensor, or scalar curvature.

  4. Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/Riemannian_geometry

    Riemannian geometry originated with the vision of Bernhard Riemann expressed in his inaugural lecture "Ueber die Hypothesen, welche der Geometrie zu Grunde liegen" ("On the Hypotheses on which Geometry is Based"). [1] It is a very broad and abstract generalization of the differential geometry of surfaces in R 3.

  5. Riemann integral - Wikipedia

    en.wikipedia.org/wiki/Riemann_integral

    One popular restriction is the use of "left-hand" and "right-hand" Riemann sums. In a left-hand Riemann sum, t i = x i for all i, and in a right-hand Riemann sum, t i = x i + 1 for all i. Alone this restriction does not impose a problem: we can refine any partition in a way that makes it a left-hand or right-hand sum by subdividing it at each t i.

  6. Trapezoidal rule - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule

    The trapezoidal rule may be viewed as the result obtained by averaging the left and right Riemann sums, and is sometimes defined this way. The integral can be even better approximated by partitioning the integration interval, applying the trapezoidal rule to each subinterval, and summing the results. In practice, this "chained" (or "composite ...

  7. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    This is a fundamental result. Although much of the basic theory of Riemannian metrics can be developed using only that a smooth manifold is a locally Euclidean topological space, for this result it is necessary to use that smooth manifolds are Hausdorff and paracompact. The reason is that the proof makes use of a partition of unity.

  8. Line integral - Wikipedia

    en.wikipedia.org/wiki/Line_integral

    For a line integral over a scalar field, the integral can be constructed from a Riemann sum using the above definitions of f, C and a parametrization r of C. This can be done by partitioning the interval [a, b] into n sub-intervals [t i−1, t i] of length Δt = (b − a)/n, then r(t i) denotes some point, call it a sample point, on the curve C.

  9. Riemannian connection on a surface - Wikipedia

    en.wikipedia.org/wiki/Riemannian_connection_on_a...

    In mathematics, the Riemannian connection on a surface or Riemannian 2-manifold refers to several intrinsic geometric structures discovered by Tullio Levi-Civita, Élie Cartan and Hermann Weyl in the early part of the twentieth century: parallel transport, covariant derivative and connection form.