Search results
Results from the WOW.Com Content Network
Vertically upwards seepage is a source of danger on the downstream side of sheet piling and beneath the toe of a dam or levee. Erosion of the soil, known as "soil piping", can lead to failure of the structure and to sinkhole formation. Seeping water removes soil, starting from the exit point of the seepage, and erosion advances upgradient. [17]
Underdamped spring–mass system with ζ < 1. In physical systems, damping is the loss of energy of an oscillating system by dissipation. [1] [2] Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. [3]
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.
According to the Mohr-Coulomb equation, the cohesion of a soil is defined as the shear strength at zero normal pressure on the surface of failure. [4] The shear force is a function of cohesion, normal stress on rupture surface, and angle of internal friction. Shear force is significantly impacted by drainage conditions. [5]
The Richards equation represents the movement of water in unsaturated soils, and is attributed to Lorenzo A. Richards who published the equation in 1931. [1] It is a quasilinear partial differential equation ; its analytical solution is often limited to specific initial and boundary conditions. [ 2 ]
Damp-proofing rods are available with BBA approval. The rods are placed into holes drilled in the mortar course and the active ingredients diffuse along the mortar line before curing to form a damp-proof course. [53] Damp-proofing rods are usually supplied in 180mm (7") lengths suitable for inserting into a 9-inch thick wall.
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
In 1907, Edgar Buckingham created the first water retention curve. [2] It was measured and made for six soils varying in texture from sand to clay. The data came from experiments made on soil columns 48 inch tall, where a constant water level maintained about 2 inches above the bottom through periodic addition of water from a side tube.