Search results
Results from the WOW.Com Content Network
Fig 1: Typical example of Nyquist frequency and rate. They are rarely equal, because that would require over-sampling by a factor of 2 (i.e. 4 times the bandwidth). In signal processing, the Nyquist rate, named after Harry Nyquist, is a value equal to twice the highest frequency of a given function or signal
Early uses of the term Nyquist frequency, such as those cited above, are all consistent with the definition presented in this article.Some later publications, including some respectable textbooks, call twice the signal bandwidth the Nyquist frequency; [6] [7] this is a distinctly minority usage, and the frequency at twice the signal bandwidth is otherwise commonly referred to as the Nyquist rate.
The sampling theorem was implied by the work of Harry Nyquist in 1928, [11] in which he showed that up to independent pulse samples could be sent through a system of bandwidth ; but he did not explicitly consider the problem of sampling and reconstruction of continuous signals.
Harry Nyquist (/ ˈ n aɪ k w ɪ s t /, Swedish: [ˈnŷːkvɪst]; February 7, 1889 – April 4, 1976) was a Swedish-American physicist and electronic engineer who made important contributions to communication theory.
Harry Nyquist's 1924 paper, Certain Factors Affecting Telegraph Speed, contains a theoretical section quantifying "intelligence" and the "line speed" at which it can be transmitted by a communication system, giving the relation W = K log m (recalling the Boltzmann constant), where W is the speed of transmission of intelligence, m is the number ...
Two prominent differences in performance between the two methods are the bandwidth and the signal-to-noise ratio (S/N ratio). The bandwidth of the digital system is determined, according to the Nyquist frequency, by the sample rate used. The bandwidth of an analog system is dependent on the physical and electronic capabilities of the analog ...
In the context of, for example, the sampling theorem and Nyquist sampling rate, bandwidth typically refers to baseband bandwidth. In the context of Nyquist symbol rate or Shannon-Hartley channel capacity for communication systems it refers to passband bandwidth. The Rayleigh bandwidth of a simple radar pulse is defined as the inverse of its ...
The Nyquist rate is defined as twice the bandwidth of the signal. Oversampling is capable of improving resolution and signal-to-noise ratio, and can be helpful in avoiding aliasing and phase distortion by relaxing anti-aliasing filter performance requirements. A signal is said to be oversampled by a factor of N if it is sampled at N times the ...