enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vapour pressure of water - Wikipedia

    en.wikipedia.org/wiki/Vapour_pressure_of_water

    The boiling point of water is the temperature at which the saturated vapor pressure equals the ambient pressure. Water supercooled below its normal freezing point has a higher vapor pressure than that of ice at the same temperature and is, thus, unstable. Calculations of the (saturation) vapor pressure of water are commonly used in meteorology.

  3. Antoine equation - Wikipedia

    en.wikipedia.org/wiki/Antoine_equation

    The Antoine equation is a class of semi-empirical correlations describing the relation between vapor pressure and temperature for pure ... Water 8.07131: 1730.63: 233 ...

  4. Water vapor - Wikipedia

    en.wikipedia.org/wiki/Water_vapor

    The maximum partial pressure (saturation pressure) of water vapor in air varies with temperature of the air and water vapor mixture. A variety of empirical formulas exist for this quantity; the most used reference formula is the Goff-Gratch equation for the SVP over liquid water below zero degrees Celsius:

  5. Tetens equation - Wikipedia

    en.wikipedia.org/wiki/Tetens_equation

    where temperature T is in degrees Celsius (°C) and saturation vapor pressure P is in kilopascals (kPa). According to Monteith and Unsworth, "Values of saturation vapour pressure from Tetens' formula are within 1 Pa of exact values up to 35 °C." Murray (1967) provides Tetens' equation for temperatures below 0 °C: [3]

  6. Goff–Gratch equation - Wikipedia

    en.wikipedia.org/wiki/Goff–Gratch_equation

    e * is the saturation water vapor pressure T is the absolute air temperature in kelvins T st is the steam-point (i.e. boiling point at 1 atm.) temperature (373.15 K) e * st is e * at the steam-point pressure (1 atm = 1013.25 hPa) Similarly, the correlation for the saturation water vapor pressure over ice is:

  7. Clausius–Clapeyron relation - Wikipedia

    en.wikipedia.org/wiki/Clausius–Clapeyron_relation

    Therefore, the August–Roche–Magnus equation implies that saturation water vapor pressure changes approximately exponentially with temperature under typical atmospheric conditions, and hence the water-holding capacity of the atmosphere increases by about 7% for every 1 °C rise in temperature.

  8. Vapor pressure - Wikipedia

    en.wikipedia.org/wiki/Vapor_pressure

    The atmospheric pressure boiling point of a liquid (also known as the normal boiling point) is the temperature at which the vapor pressure equals the ambient atmospheric pressure. With any incremental increase in that temperature, the vapor pressure becomes sufficient to overcome atmospheric pressure and cause the liquid to form vapor bubbles.

  9. Triple point - Wikipedia

    en.wikipedia.org/wiki/Triple_point

    However, its empirical value remains important: the unique combination of pressure and temperature at which liquid water, solid ice, and water vapor coexist in a stable equilibrium is approximately 273.16 ± 0.0001 K [4] and a vapor pressure of 611.657 pascals (6.11657 mbar; 0.00603659 atm). [5] [6]