Search results
Results from the WOW.Com Content Network
A weight function is a mathematical device used when performing a sum, integral, or average to give some elements more "weight" or influence on the result than other elements in the same set. The result of this application of a weight function is a weighted sum or weighted average .
Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function.Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time.
A weighting curve is a graph of a set of factors, that are used to 'weight' measured values of a variable according to their importance in relation to some outcome. An important example is frequency weighting in sound level measurement where a specific set of weighting curves known as A-, B-, C-, and D-weighting as defined in IEC 61672 [1] are used.
A weighted average is an average that has multiplying factors to give different weights to data at different positions in the sample window. Mathematically, the weighted moving average is the convolution of the data with a fixed weighting function. One application is removing pixelization from a digital graphical image. [citation needed]
For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().
Other weighting curves are used in rumble measurement and flutter measurement to properly assess subjective effect. In each field of measurement, special units are used to indicate a weighted measurement as opposed to a basic physical measurement of energy level. For sound, the unit is the phon (1 kHz equivalent level).
The scores of each case (row) on each factor (column). To compute the factor score for a given case for a given factor, one takes the case's standardized score on each variable, multiplies by the corresponding loadings of the variable for the given factor, and sums these products. Computing factor scores allows one to look for factor outliers.
The k-nearest neighbour classifier can be viewed as assigning the k nearest neighbours a weight / and all others 0 weight. This can be generalised to weighted nearest neighbour classifiers. That is, where the i th nearest neighbour is assigned a weight , with = =. An analogous result on the strong consistency of weighted nearest neighbour ...