Search results
Results from the WOW.Com Content Network
Torque ; system unit unit-code symbol or abbrev. notes sample default conversion combination output units Industrial: SI: newton-metre: Nm N⋅m Triple combinations are also possible. See the full list. 1.0 N⋅m (0.74 lbf⋅ft) Nm kg.m; Nm lb.ft; Non-SI metric: kilogram metre: kg.m kg⋅m 1.0 kg⋅m (9.8 N⋅m; 7.2 lb⋅ft) kg.m Nm; kg.m lb.ft ...
Torque; system unit code symbol or abbrev. notes conversion factor/N⋅m combinations Industrial: SI: Newton-metre: Nm N⋅m 1 Nm lbft; Nm lbfft; Non-SI metric: kilogram-metre: kgm kg·m 9.80665 Imperial & US customary: pound-foot: lbft lb⋅ft Pound-inch (lb.in) is also available 1.3558 Scientific: SI: newton metre: Nm N⋅m 1 Nm lbft; Nm ...
Change in angular velocity per unit time rad/s 2: T −2: Area: A: Extent of a surface m 2: L 2: extensive, bivector or scalar Area density: ρ A: Mass per unit area kg⋅m −2: L −2 M: intensive Capacitance: C: Stored charge per unit electric potential farad (F = C/V) L −2 M −1 T 4 I 2: scalar Catalytic activity concentration
That is: linear distance = radius × angular distance. And by definition, linear distance = linear speed × time = radius × angular speed × time. By the definition of torque: torque = radius × force. We can rearrange this to determine force = torque ÷ radius. These two values can be substituted into the definition of power:
Conversions between units in the metric system are defined by their prefixes (for example, 1 kilogram = 1000 grams, 1 milligram = 0.001 grams) and are thus not listed in this article. Exceptions are made if the unit is commonly known by another name (for example, 1 micron = 10 −6 metre).
The newton-metre or newton-meter (also non-hyphenated, newton metre or newton meter; symbol N⋅m [1] or N m [1]) [a] is the unit of torque (also called moment) in the International System of Units (SI). One newton-metre is equal to the torque resulting from a force of one newton applied perpendicularly to the end of a moment arm that is one ...
Units for other physical quantities are derived from this set as needed. In English Engineering Units, the pound-mass and the pound-force are distinct base units, and Newton's Second Law of Motion takes the form = where is the acceleration in ft/s 2 and g c = 32.174 lb·ft/(lbf·s 2).
The precision is 1 (1 decimal place), and units are abbreviated and linked. {{convert|895|hPa|psi inHg atm mbar|1|abbr=on|lk=on}} → 895 hPa (13.0 psi ; 26.4 inHg ; 0.9 atm ; 895.0 mbar ) It is preferable to use "+" to separate output units when the first unit uses engineering notation; that avoids looking up the unit in Module:Convert/extra .