enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cone - Wikipedia

    en.wikipedia.org/wiki/Cone

    For a circular cone with radius r and height h, the base is a circle of area and so the formula for volume becomes [6] V = 1 3 π r 2 h . {\displaystyle V={\frac {1}{3}}\pi r^{2}h.} Slant height

  3. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    This is a list of volume formulas of basic shapes: [4]: 405–406 Cone – , where is the base's radius; Cube – , where is the side's length;; Cuboid – , where , , and are the sides' length;

  4. Spherical sector - Wikipedia

    en.wikipedia.org/wiki/Spherical_sector

    If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos ⁡ φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone aperture angle, i.e., φ is the angle between the rim of the cap and the ...

  5. Solid angle - Wikipedia

    en.wikipedia.org/wiki/Solid_angle

    Diagram showing a section through the centre of a cone (1) subtending a solid angle of 1 steradian in a sphere of radius r, along with the spherical "cap" (2). The external surface area A of the cap equals r2 only if solid angle of the cone is exactly 1 steradian. Hence, in this figure θ = A/2 and r = 1.

  6. The Method of Mechanical Theorems - Wikipedia

    en.wikipedia.org/wiki/The_Method_of_Mechanical...

    The volume of the cone is 1/3 its base area times the height. The base of the cone is a circle of radius 2, with area , while the height is 2, so the area is /. Subtracting the volume of the cone from the volume of the cylinder gives the volume of the sphere:

  7. Nose cone design - Wikipedia

    en.wikipedia.org/wiki/Nose_cone_design

    A bi-conic nose cone shape is simply a cone with length L 1 stacked on top of a frustum of a cone (commonly known as a conical transition section shape) with length L 2, where the base of the upper cone is equal in radius R 1 to the top radius of the smaller frustum with base radius R 2. = +

  8. Hypercone - Wikipedia

    en.wikipedia.org/wiki/Hypercone

    If it is restricted between the hyperplanes w = 0 and w = r for some nonzero r, then it may be closed by a 3-ball of radius r, centered at (0,0,0,r), so that it bounds a finite 4-dimensional volume. This volume is given by the formula ⁠ 1 / 3 ⁠ π r 4, and is the 4-dimensional equivalent of the solid cone. The ball may be thought of as the ...

  9. Frustum - Wikipedia

    en.wikipedia.org/wiki/Frustum

    The Egyptians knew the correct formula for the volume of such a truncated square pyramid, but no proof of this equation is given in the Moscow papyrus. The volume of a conical or pyramidal frustum is the volume of the solid before slicing its "apex" off, minus the volume of this "apex":