Search results
Results from the WOW.Com Content Network
Three-phase transformer with four-wire output for 208Y/120 volt service: one wire for neutral, others for A, B and C phases. Three-phase electric power (abbreviated 3ϕ [1]) is a common type of alternating current (AC) used in electricity generation, transmission, and distribution. [2]
Phasor diagram showing 240 V delta and center-tapped phase (a–c) creating two 120 V pairs. Consider the low-voltage side of a 120/240 V high leg delta connected transformer, where the b phase is the high leg. The line-to-line voltage magnitudes are all the same: = = =.
In both those instances the white wire should be identified as being hot, usually with black tape inside junction boxes. The neutral wire is identified by gray or white insulated wire, perhaps using stripes or markings. With lamp cord wire the ribbed wire is the neutral, and the smooth wire is the hot. NEC 2008 400.22(f) allows surface marking ...
In North America, overhead distribution systems may be three phase, four wire, with a neutral conductor. Rural distribution system may have long runs of one phase conductor and a neutral. [17] In other countries or in extreme rural areas the neutral wire is connected to the ground to use that as a return (single-wire earth return).
A circuit diagram (or: wiring diagram, electrical diagram, elementary diagram, electronic schematic) is a graphical representation of an electrical circuit. A pictorial circuit diagram uses simple images of components, while a schematic diagram shows the components and interconnections of the circuit using standardized symbolic representations.
A transformer supplying a three-wire distribution system has a single-phase input (primary) winding. The output (secondary) winding has a center tap connected to a grounded neutral. As shown in Fig. 1, either end to center has half the voltage of end-to-end. Fig. 2 illustrates the phasor diagram
Clock diagram for the regular (>50 V) connector series, viewed looking in to the socket end. The extra-low voltage connector also supports keying, although in this case the angle is the position of the minor key, assuming the major key is at the 6h position (180°).
A typical one-line diagram with annotated power flows. Red boxes represent circuit breakers, grey lines represent three-phase bus and interconnecting conductors, the orange circle represents an electric generator, the green spiral is an inductor, and the three overlapping blue circles represent a double-wound transformer with a tertiary winding.