Search results
Results from the WOW.Com Content Network
It is named "chinchilla" because it is a further development over a previous model family named Gopher.Both model families were trained in order to investigate the scaling laws of large language models.
Online learning is a common technique used in areas of machine learning where it is computationally infeasible to train over the entire dataset, requiring the need of out-of-core algorithms. It is also used in situations where it is necessary for the algorithm to dynamically adapt to new patterns in the data, or when the data itself is ...
Google also extended PaLM using a vision transformer to create PaLM-E, a state-of-the-art vision-language model that can be used for robotic manipulation. [11] [12] The model can perform tasks in robotics competitively without the need for retraining or fine-tuning. [13] In May 2023, Google announced PaLM 2 at the annual Google I/O keynote. [14]
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
TensorFlow serves as a core platform and library for machine learning. TensorFlow's APIs use Keras to allow users to make their own machine-learning models. [33] [43] In addition to building and training their model, TensorFlow can also help load the data to train the model, and deploy it using TensorFlow Serving. [44]
For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...
In pattern recognition and machine learning, a feature vector is an n-dimensional vector of numerical features that represent some object. Many algorithms in machine learning require a numerical representation of objects, since such representations facilitate processing and statistical analysis. When representing images, the feature values ...
Natural language understanding (NLU) or natural language interpretation (NLI) [1] is a subset of natural language processing in artificial intelligence that deals with machine reading comprehension. NLU has been considered an AI-hard problem.