enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Doppler_effect

    The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. [ 1 ] [ 2 ] [ 3 ] The Doppler effect is named after the physicist Christian Doppler , who described the phenomenon in 1842.

  3. Doppler tracking - Wikipedia

    en.wikipedia.org/wiki/Doppler_tracking

    Doppler tracking.The Doppler effect allows the measurement of the distance between a transmitter from space and a receiver on the ground by observing how the frequency received from the transmitter changes as it approaches the transmitter, is overhead, and moves away.

  4. Doppler radio direction finding - Wikipedia

    en.wikipedia.org/wiki/Doppler_radio_direction...

    Doppler radio direction finding, also known as Doppler DF, is a radio direction-finding method that generates accurate bearing information with minimal electronics. It is best suited to applications in VHF and UHF frequencies and takes only a short time to indicate a direction. This makes it suitable for measuring the location of the vast ...

  5. GPS signals - Wikipedia

    en.wikipedia.org/wiki/GPS_signals

    The carrier frequency varies by roughly 5 kHz due to the Doppler effect when the receiver is stationary; if the receiver moves, the variation is higher. The code frequency deviation is 1/1,540 times the carrier frequency deviation for L1 because the code frequency is 1/1,540 of the carrier frequency (see § Frequencies used by GPS). The down ...

  6. Satellite geolocation - Wikipedia

    en.wikipedia.org/wiki/Satellite_geolocation

    The frequency differences observed are due to different Doppler shift resulting from relative satellite motion and differences in the translation frequencies of the two satellite channels. Channel translation frequencies and downlink Doppler shift and delay can be calibrated out of the measurements by observing transmitters of known location ...

  7. Radar signal characteristics - Wikipedia

    en.wikipedia.org/wiki/Radar_signal_characteristics

    A simple calculation reveals that a radar echo will take approximately 10.8 μs to return from a target 1 statute mile away (counting from the leading edge of the transmitter pulse (T 0), (sometimes known as transmitter main bang)). For convenience, these figures may also be expressed as 1 nautical mile in 12.4 μs or 1 kilometre in 6.7 μs.

  8. Continuous-wave radar - Wikipedia

    en.wikipedia.org/wiki/Continuous-wave_radar

    Continuous-wave radar (CW radar) is a type of radar system where a known stable frequency continuous wave radio energy is transmitted and then received from any reflecting objects. [1] Individual objects can be detected using the Doppler effect , which causes the received signal to have a different frequency from the transmitted signal ...

  9. International Cospas-Sarsat Programme - Wikipedia

    en.wikipedia.org/wiki/International_Cospas...

    LUTs detecting distress signals relayed by LEOSAR satellites perform mathematical calculations based on the Doppler-induced frequency shift received by the satellites as they pass over a beacon transmitting at a fixed frequency. From the mathematical calculations, it is possible to determine both bearing and range with respect to the satellite ...