Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
Oxygen is the final electron acceptor in the degradation of both purines. Uric acid is then excreted from the body in different forms depending on the animal. [5] Free purine and pyrimidine bases that are released into the cell are typically transported intercellularly across membranes and salvaged to create more nucleotides via nucleotide salvage.
A chaotropic agent is a substance which disrupts the structure of, and denatures, macromolecules such as proteins and nucleic acids (e.g. DNA and RNA).Chaotropic solutes increase the entropy of the system by interfering with intermolecular interactions mediated by non-covalent forces such as hydrogen bonds, van der Waals forces, and hydrophobic effects.
The process of DNA denaturation can be used to analyze some aspects of DNA. Because cytosine / guanine base-pairing is generally stronger than adenine / thymine base-pairing, the amount of cytosine and guanine in a genome is called its GC-content and can be estimated by measuring the temperature at which the genomic DNA melts. [ 2 ]
Sodium hydroxide, also known as lye and caustic soda, [1] [2] is an inorganic compound with the formula NaOH.It is a white solid ionic compound consisting of sodium cations Na + and hydroxide anions OH −.
DNA damage inhibits M-CDKs which are a key component of progression into mitosis. In all eukaryotic cells, ATR and ATM are protein kinases that detect DNA damage. They bind to DNA damaged sites and activate Chk1, Chk2, and, in animal cells, p53. Together, these proteins make up the DNA damage response system.
The polymerase chain reaction is the most widely used method for in vitro DNA amplification for purposes of molecular biology and biomedical research. [1] This process involves the separation of the double-stranded DNA in high heat into single strands (the denaturation step, typically achieved at 95–97 °C), annealing of the primers to the single stranded DNA (the annealing step) and copying ...
Different proteins also have different properties and are found in different cellular environments. Thus, it is essential to choose the best buffer based on the purpose and design of the experiments. The important factors to be considered are: pH, ionic strength, usage of detergent, protease inhibitors to prevent proteolytic processes. [2]