Search results
Results from the WOW.Com Content Network
The test was devised by Gottfried Leibniz and is sometimes known as Leibniz's test, Leibniz's rule, or the Leibniz criterion. The test is only sufficient, not necessary, so some convergent alternating series may fail the first part of the test. [1] [2] [3] For a generalization, see Dirichlet's test. [4] [5] [6]
Like any series, an alternating series is a convergent series if and only if the sequence of partial sums of the series converges to a limit. The alternating series test guarantees that an alternating series is convergent if the terms a n converge to 0 monotonically, but this condition is not necessary for convergence.
For example, to determine sensitivity to a dim light in a two-interval forced choice procedure, an observer could be presented with series of trials comprising two sub-trials (intervals) in which the dim light is presented randomly in the first or the second interval. After each trial, the observer responds only "first" or "second".
If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]
In mathematics, the Leibniz formula for π, named after Gottfried Wilhelm Leibniz, states that = + + = = +,. an alternating series.. It is sometimes called the Madhava–Leibniz series as it was first discovered by the Indian mathematician Madhava of Sangamagrama or his followers in the 14th–15th century (see Madhava series), [1] and was later independently rediscovered by James Gregory in ...
Many significance tests have an estimation counterpart; [26] in almost every case, the test result (or its p-value) can be simply substituted with the effect size and a precision estimate. For example, instead of using Student's t-test, the analyst can compare two independent groups by calculating the mean difference and its 95% confidence ...
Divergence can also be shown directly from the definition: an infinite series converges if and only if the sequence of partial sums converges to a limit, in which case that limit is the value of the infinite series.
In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series. Statement [ edit ]