Search results
Results from the WOW.Com Content Network
For the 1-dimensional case, the geometric median coincides with the median.This is because the univariate median also minimizes the sum of distances from the points. (More precisely, if the points are p 1, ..., p n, in that order, the geometric median is the middle point (+) / if n is odd, but is not uniquely determined if n is even, when it can be any point in the line segment between the two ...
For deterministic algorithms, it has been shown that selecting the th element requires (+ (/)) + comparisons, where () = + is the binary entropy function. [35] The special case of median-finding has a slightly larger lower bound on the number of comparisons, at least (+), for .
Using this approximate median as an improved pivot, the worst-case complexity of quickselect reduces from quadratic to linear, which is also the asymptotically optimal worst-case complexity of any selection algorithm. In other words, the median of medians is an approximate median-selection algorithm that helps building an asymptotically optimal ...
It has also been called Sen's slope estimator, [1] [2] slope selection, [3] [4] the single median method, [5] the Kendall robust line-fit method, [6] and the Kendall–Theil robust line. [7] It is named after Henri Theil and Pranab K. Sen , who published papers on this method in 1950 and 1968 respectively, [ 8 ] and after Maurice Kendall ...
This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.
As a median is based on the middle data in a set, it is not necessary to know the value of extreme results in order to calculate it. For example, in a psychology test investigating the time needed to solve a problem, if a small number of people failed to solve the problem at all in the given time a median can still be calculated. [6]
The proposed algorithm uses Lloyd-style iteration which alternates between an expectation (E) and maximization (M) step, making this an expectation–maximization algorithm. In the E step, all objects are assigned to their nearest median. In the M step, the medians are recomputed by using the median in each single dimension.
If the points lie on the real line, computing the medoid reduces to computing the median which can be done in () by Quick-select algorithm of Hoare. [5] However, in higher dimensional real spaces, no linear-time algorithm is known.