Search results
Results from the WOW.Com Content Network
Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space. (If the position vector of a point particle varies with time, it will trace out a path, the trajectory of a particle.)
This operator occurs in relativistic quantum field theory, such as the Dirac equation and other relativistic wave equations, since energy and momentum combine into the 4-momentum vector above, momentum and energy operators correspond to space and time derivatives, and they need to be first order partial derivatives for Lorentz covariance.
between the position operator x and momentum operator p x in the x direction of a point particle in one dimension, where [x, p x] = x p x − p x x is the commutator of x and p x , i is the imaginary unit, and ℏ is the reduced Planck constant h/2π, and is the unit operator. In general, position and momentum are vectors of operators and their ...
Informally stated, with certain technical assumptions, every representation of the Heisenberg group H 2n + 1 is equivalent to the position operators and momentum operators on R n. Alternatively, that they are all equivalent to the Weyl algebra (or CCR algebra ) on a symplectic space of dimension 2 n .
In quantum mechanics, the position operator is the operator that corresponds to the position observable of a particle. When the position operator is considered with a wide enough domain (e.g. the space of tempered distributions ), its eigenvalues are the possible position vectors of the particle.
Due to linearity, vectors can be defined in any number of dimensions, as each component of the vector acts on the function separately. One mathematical example is the del operator, which is itself a vector (useful in momentum-related quantum operators, in the table below). An operator in n-dimensional space can be written:
Since translation operators all commute with each other (see above), and since each component of the momentum operator is a sum of two scaled translation operators (e.g. ^ = (^ ((,,)) ^ ((,,)))), it follows that translation operators all commute with the momentum operator, i.e. ^ ^ = ^ ^ This commutation with the momentum operator holds true ...
Specifically, the position and momentum operators in quantum mechanics, usually denoted and , satisfy the canonical commutation relation: [,] = where is the identity operator. It follows that X {\displaystyle X} and P {\displaystyle P} commute with their commutator.