enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Momentum operator - Wikipedia

    en.wikipedia.org/wiki/Momentum_operator

    This operator occurs in relativistic quantum field theory, such as the Dirac equation and other relativistic wave equations, since energy and momentum combine into the 4-momentum vector above, momentum and energy operators correspond to space and time derivatives, and they need to be first order partial derivatives for Lorentz covariance.

  3. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space. (If the position vector of a point particle varies with time, it will trace out a path, the trajectory of a particle.)

  4. Canonical commutation relation - Wikipedia

    en.wikipedia.org/wiki/Canonical_commutation_relation

    between the position operator x and momentum operator p x in the x direction of a point particle in one dimension, where [x, p x] = x p x − p x x is the commutator of x and p x , i is the imaginary unit, and ℏ is the reduced Planck constant h/2π, and is the unit operator. In general, position and momentum are vectors of operators and their ...

  5. Baker–Campbell–Hausdorff formula - Wikipedia

    en.wikipedia.org/wiki/Baker–Campbell...

    Specifically, the position and momentum operators in quantum mechanics, usually denoted and , satisfy the canonical commutation relation: [,] = where is the identity operator. It follows that X {\displaystyle X} and P {\displaystyle P} commute with their commutator.

  6. Uncertainty principle - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_principle

    where = is the reduced Planck constant.. The quintessentially quantum mechanical uncertainty principle comes in many forms other than positionmomentum. The energy–time relationship is widely used to relate quantum state lifetime to measured energy widths but its formal derivation is fraught with confusing issues about the nature of time.

  7. Stone–von Neumann theorem - Wikipedia

    en.wikipedia.org/wiki/Stone–von_Neumann_theorem

    Informally stated, with certain technical assumptions, every representation of the Heisenberg group H 2n + 1 is equivalent to the position operators and momentum operators on R n. Alternatively, that they are all equivalent to the Weyl algebra (or CCR algebra ) on a symplectic space of dimension 2 n .

  8. Position operator - Wikipedia

    en.wikipedia.org/wiki/Position_operator

    In quantum mechanics, the position operator is the operator that corresponds to the position observable of a particle. When the position operator is considered with a wide enough domain (e.g. the space of tempered distributions ), its eigenvalues are the possible position vectors of the particle.

  9. Translation operator (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Translation_operator...

    Since translation operators all commute with each other (see above), and since each component of the momentum operator is a sum of two scaled translation operators (e.g. ^ = (^ ((,,)) ^ ((,,)))), it follows that translation operators all commute with the momentum operator, i.e. ^ ^ = ^ ^ This commutation with the momentum operator holds true ...