Search results
Results from the WOW.Com Content Network
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
In physics, the thermal equation of state is a mathematical expression of pressure P, temperature T, and, volume V.The thermal equation of state for ideal gases is the ideal gas law, expressed as PV=nRT (where R is the gas constant and n the amount of substance), while the thermal equation of state for solids is expressed as:
The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.
The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is amenable to analysis under statistical mechanics. The requirement of zero interaction can often be relaxed if, for example, the interaction is perfectly elastic or regarded as point-like collisions.
The ideal gas law can be recast into the formula: p ρ = T m {\displaystyle {\frac {p}{\rho }}={\frac {T}{m}}} By substituting this ratio in the Newton–Laplace law, the expression of the sound speed into an ideal gas as function of temperature is finally achieved.
The cubic virial equation of state at is: = (+ +) It can be rearranged as: (+ +) = The factor / is the volume of saturated gas according to the ideal gas law, and can be given a unique name : = In the saturation region, the cubic equation has three roots, and can be written alternatively as: () = which can be expanded as: (+ +) + (+ +) = is a ...
An example of an equation of state correlates densities of gases and liquids to temperatures and pressures, known as the ideal gas law, which is roughly accurate for weakly polar gases at low pressures and moderate temperatures. This equation becomes increasingly inaccurate at higher pressures and lower temperatures, and fails to predict ...
The gas which comprises an atmosphere is usually assumed to be an ideal gas, which is to say: = Where ρ is mass density, M is average molecular weight, P is pressure, T is temperature, and R is the ideal gas constant. The gas is held in place by so-called "hydrostatic" forces. That is to say, for a particular layer of gas at some altitude: the ...