enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kurtosis - Wikipedia

    en.wikipedia.org/wiki/Kurtosis

    Larger kurtosis indicates a more serious outlier problem, and may lead the researcher to choose alternative statistical methods. D'Agostino's K-squared test is a goodness-of-fit normality test based on a combination of the sample skewness and sample kurtosis, as is the Jarque–Bera test for normality.

  3. Kurtosis risk - Wikipedia

    en.wikipedia.org/wiki/Kurtosis_risk

    Kurtosis risk applies to any kurtosis-related quantitative model that assumes the normal distribution for certain of its independent variables when the latter may in fact have kurtosis much greater than does the normal distribution. Kurtosis risk is commonly referred to as "fat tail" risk. The "fat tail" metaphor explicitly describes the ...

  4. Independent component analysis - Wikipedia

    en.wikipedia.org/wiki/Independent_component_analysis

    Another approach is using negentropy [8] [15] instead of kurtosis. Using negentropy is a more robust method than kurtosis, as kurtosis is very sensitive to outliers. The negentropy methods are based on an important property of Gaussian distribution: a Gaussian variable has the largest entropy among all continuous random variables of equal variance.

  5. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Birnbaum–Saunders distribution, also known as the fatigue life distribution, is a probability distribution used extensively in reliability applications to model failure times. The chi distribution. The noncentral chi distribution; The chi-squared distribution, which is the sum of the squares of n independent Gaussian random variables.

  6. Skewed generalized t distribution - Wikipedia

    en.wikipedia.org/wiki/Skewed_generalized_t...

    where is the beta function, is the location parameter, > is the scale parameter, < < is the skewness parameter, and > and > are the parameters that control the kurtosis. and are not parameters, but functions of the other parameters that are used here to scale or shift the distribution appropriately to match the various parameterizations of this distribution.

  7. Solving Real-World Problems Is Key to Building Trust in AI

    www.aol.com/news/solving-real-world-problems-key...

    The antidote to apprehension around AI is to build products that solve real problems, and then highlight those solutions. Organizations can bring stakeholders in early and establish internal ...

  8. Are we multitasking too much? Why it can be stressful and ...

    www.aol.com/lifestyle/multitasking-too-much-why...

    The allure of multitasking is hard to ignore. Of course it sounds like a great idea to take that meeting from the car, or to have Real Housewives on “in the background” while you work, or to ...

  9. Multimodal distribution - Wikipedia

    en.wikipedia.org/wiki/Multimodal_distribution

    The kurtosis is here defined to be the standardised fourth moment around the mean. The value of b lies between 0 and 1. [26] The logic behind this coefficient is that a bimodal distribution with light tails will have very low kurtosis, an asymmetric character, or both – all of which increase this coefficient. The formula for a finite sample ...