enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electric charge - Wikipedia

    en.wikipedia.org/wiki/Electric_charge

    The electric charge of a macroscopic object is the sum of the electric charges of the particles that it is made up of. This charge is often small, because matter is made of atoms , and atoms typically have equal numbers of protons and electrons , in which case their charges cancel out, yielding a net charge of zero, thus making the atom neutral.

  3. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.

  4. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    Considering the charge to be invariant of observer, the electric and magnetic fields of a uniformly moving point charge can hence be derived by the Lorentz transformation of the four force on the test charge in the charge's frame of reference given by Coulomb's law and attributing magnetic and electric fields by their definitions given by the ...

  5. Jefimenko's equations - Wikipedia

    en.wikipedia.org/wiki/Jefimenko's_equations

    The Heaviside–Feynman formula, also known as the Jefimenko–Feynman formula, can be seen as the point-like electric charge version of Jefimenko's equations. Actually, it can be (non trivially) deduced from them using Dirac functions , or using the Liénard-Wiechert potentials . [ 4 ]

  6. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    A tiny Gauss's box whose sides are perpendicular to a conductor's surface is used to find the local surface charge once the electric potential and the electric field are calculated by solving Laplace's equation. The electric field is perpendicular, locally, to the equipotential surface of the conductor, and zero inside; its flux πa 2 ·E, by ...

  7. Mass-to-charge ratio - Wikipedia

    en.wikipedia.org/wiki/Mass-to-charge_ratio

    When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.

  8. Statcoulomb - Wikipedia

    en.wikipedia.org/wiki/Statcoulomb

    2 are the two electric charges, and r is the distance between the charges. This serves to define charge as a quantity in the Gaussian system. The statcoulomb is defined such that if two electric charges of 1 statC each and have a separation of 1 cm, the force of mutual electrical repulsion is 1 dyne. [1] Substituting F = 1 dyn, q G 1 = q G

  9. Electric potential energy - Wikipedia

    en.wikipedia.org/wiki/Electric_potential_energy

    A point charge q in the electric field of another charge Q. The electrostatic potential energy, U E, of one point charge q at position r in the presence of a point charge Q, taking an infinite separation between the charges as the reference position, is: