enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gauge fixing - Wikipedia

    en.wikipedia.org/wiki/Gauge_fixing

    The Coulomb gauge (also known as the transverse gauge) is used in quantum chemistry and condensed matter physics and is defined by the gauge condition (more precisely, gauge fixing condition) (,) =. It is particularly useful for "semi-classical" calculations in quantum mechanics, in which the vector potential is quantized but the Coulomb ...

  3. Lorenz gauge condition - Wikipedia

    en.wikipedia.org/wiki/Lorenz_gauge_condition

    The Lorenz gauge hence contradicted Maxwell's original derivation of the EM wave equation by introducing a retardation effect to the Coulomb force and bringing it inside the EM wave equation alongside the time varying electric field, which was introduced in Lorenz's paper "On the identity of the vibrations of light with electrical currents".

  4. Electromagnetic four-potential - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_four-potential

    There is gauge freedom in A in that of the three forms in this decomposition, only the coexact form has any effect on the electromagnetic tensor F = d A {\displaystyle F=dA} . Exact forms are closed, as are harmonic forms over an appropriate domain, so d d α = 0 {\displaystyle dd\alpha =0} and d γ = 0 {\displaystyle d\gamma =0} , always.

  5. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    The gauge-fixed potentials still have a gauge freedom under all gauge transformations that leave the gauge fixing equations invariant. Inspection of the potential equations suggests two natural choices. In the Coulomb gauge, we impose ∇ ⋅ A = 0, which is mostly used in the case of magneto statics when we can neglect the c −2 ∂ 2 A/∂t ...

  6. Heaviside–Lorentz units - Wikipedia

    en.wikipedia.org/wiki/Heaviside–Lorentz_units

    As in the Gaussian system (G), the Heaviside–Lorentz system (HL) uses the length–mass–time dimensions. This means that all of the units of electric and magnetic quantities are expressible in terms of the units of the base quantities length, time and mass. Coulomb's equation, used to define charge in these systems, is F = q G 1 q G

  7. Coordinate conditions - Wikipedia

    en.wikipedia.org/wiki/Coordinate_conditions

    Thus, coordinate conditions are a type of gauge condition. [1] No coordinate condition is generally covariant, but many coordinate conditions are Lorentz covariant or rotationally covariant . Naively, one might think that coordinate conditions would take the form of equations for the evolution of the four coordinates, and indeed in some cases ...

  8. Time temperature indicator - Wikipedia

    en.wikipedia.org/wiki/Time_temperature_indicator

    A time temperature indicator (TTI) is a device or smart label that shows the accumulated time-temperature history of a product. Time temperature indicators are commonly used on food , pharmaceutical , and medical products to indicate exposure to excessive temperature (and time at temperature).

  9. Liénard–Wiechert potential - Wikipedia

    en.wikipedia.org/wiki/Liénard–Wiechert_potential

    The Liénard–Wiechert potentials describe the classical electromagnetic effect of a moving electric point charge in terms of a vector potential and a scalar potential in the Lorenz gauge. Stemming directly from Maxwell's equations , these describe the complete, relativistically correct, time-varying electromagnetic field for a point charge in ...