Search results
Results from the WOW.Com Content Network
The commutator of two operators acting on a Hilbert space is a central concept in quantum mechanics, since it quantifies how well the two observables described by these operators can be measured simultaneously. The uncertainty principle is ultimately a theorem about such commutators, by virtue of the Robertson–Schrödinger relation. [7]
Specifically, the position and momentum operators in quantum mechanics, usually denoted and , satisfy the canonical commutation relation: [,] = where is the identity operator. It follows that X {\displaystyle X} and P {\displaystyle P} commute with their commutator.
In quantum mechanics the Hamiltonian ^, (generalized) coordinate ^ and (generalized) momentum ^ are all linear operators. The time derivative of a quantum state is represented by the operator − i H ^ / ℏ {\displaystyle -i{\hat {H}}/\hbar } (by the Schrödinger equation ).
In analytical mechanics, the Jacobi identity is satisfied by the Poisson brackets. In quantum mechanics , it is satisfied by operator commutators on a Hilbert space and equivalently in the phase space formulation of quantum mechanics by the Moyal bracket .
In quantum mechanics, a complete set of commuting observables (CSCO) is a set of commuting operators whose common eigenvectors can be used as a basis to express any quantum state. In the case of operators with discrete spectra, a CSCO is a set of commuting observables whose simultaneous eigenspaces span the Hilbert space and are linearly ...
Canonical commutation rule for position q and momentum p variables of a particle, 1927.pq − qp = h/(2πi).Uncertainty principle of Heisenberg, 1927. The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics.
The classical definition of angular momentum is =.The quantum-mechanical counterparts of these objects share the same relationship: = where r is the quantum position operator, p is the quantum momentum operator, × is cross product, and L is the orbital angular momentum operator.
The mathematical formulation of quantum mechanics (QM) is built upon the concept of an operator. Physical pure states in quantum mechanics are represented as unit-norm vectors (probabilities are normalized to one) in a special complex Hilbert space. Time evolution in this vector space is given by the application of the evolution operator.