enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Gaussian_process

    Inference of continuous values with a Gaussian process prior is known as Gaussian process regression, or kriging; extending Gaussian process regression to multiple target variables is known as cokriging. [26] Gaussian processes are thus useful as a powerful non-linear multivariate interpolation tool. Kriging is also used to extend Gaussian ...

  3. Kriging - Wikipedia

    en.wikipedia.org/wiki/Kriging

    In statistics, originally in geostatistics, kriging or Kriging (/ ˈ k r iː ɡ ɪ ŋ /), also known as Gaussian process regression, is a method of interpolation based on Gaussian process governed by prior covariances. Under suitable assumptions of the prior, kriging gives the best linear unbiased prediction (BLUP) at unsampled locations. [1]

  4. Gaussian process approximations - Wikipedia

    en.wikipedia.org/wiki/Gaussian_process...

    The second is based on quantile regression using values of the process which are close to the value one is trying to predict, where distance is measured in terms of a metric on the set of indices. Local Approximate Gaussian Process uses a similar logic but constructs a valid stochastic process based on these neighboring values.

  5. Probabilistic numerics - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_numerics

    Gaussian process regression methods are based on posing the problem of solving the differential equation at hand as a Gaussian process regression problem, interpreting evaluations of the right-hand side as data on the derivative. [35] These techniques resemble to Bayesian cubature, but employ different and often non-linear observation models.

  6. Neural network Gaussian process - Wikipedia

    en.wikipedia.org/.../Neural_network_Gaussian_process

    A Neural Network Gaussian Process (NNGP) is a Gaussian process (GP) obtained as the limit of a certain type of sequence of neural networks. Specifically, a wide variety of network architectures converges to a GP in the infinitely wide limit , in the sense of distribution .

  7. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    This method uses Gaussian process regression (GPR) to fit a probabilistic model from which replicates may then be drawn. GPR is a Bayesian non-linear regression method. A Gaussian process (GP) is a collection of random variables, any finite number of which have a joint Gaussian (normal) distribution.

  8. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    For example, processes in the AR(1) model with | | are not stationary because the root of = lies within the unit circle. [3] The augmented Dickey–Fuller test assesses the stability of IMF and trend components. For stationary time series, the ARMA model is used, while for non-stationary series, LSTM models are used to derive abstract features.

  9. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Algorithms capable of operating with kernels include the kernel perceptron, support-vector machines (SVM), Gaussian processes, principal components analysis (PCA), canonical correlation analysis, ridge regression, spectral clustering, linear adaptive filters and many others.