Search results
Results from the WOW.Com Content Network
The linear-reservoir model (or Nash model) is widely used for rainfall-runoff analysis. The model uses a cascade of linear reservoirs along with a constant first-order storage coefficient, K, to predict the outflow from each reservoir (which is then used as the input to the next in the series).
Meaning that previous research was always only on small pieces of water and only rarely was the entire river system considered, allowing for the creation of a general model. After its publication, the River Continuum Concept was adopted as the accepted model in the limnology community, becoming a favorite means for describing the communities ...
[2] [3] In hydrology, a water balance equation can be used to describe the flow of water in and out of a system. A system can be one of several hydrological or water domains, such as a column of soil, a drainage basin, an irrigation area or a city. The water balance is also referred to as a water budget. Developing water budgets is a ...
Models used in hydrology are used to simulate the movement, distribution, and quality of water through rivers, soil, or aquifers. Subcategories This category has only the following subcategory.
The shallows around the point bar can become treacherous when the stream is rising. As the water depth increases over the shallows of the point bar, the vortex flow can extend closer toward the convex bank and the water speed at any point can increase dramatically in response to only a small increase in water depth.
Reservoir simulation is an area of reservoir engineering in which computer models are used to predict the flow of fluids (typically, oil, water, and gas) through porous media. The creation of models of oil fields and the implementation of calculations of field development on their basis is one of the main areas of activity of engineers and oil ...
A well known runoff model is the linear reservoir, but in practice it has limited applicability. The runoff model with a non-linear reservoir is more universally applicable, but still it holds only for catchments whose surface area is limited by the condition that the rainfall can be considered more or less uniformly distributed over the area ...
The graph takes sediment particle size and water velocity into account. [2] The upper curve shows the critical erosion velocity in cm/s as a function of particle size in mm, while the lower curve shows the deposition velocity as a function of particle size. Note that the axes are logarithmic.