Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the multivariate normal distribution, multivariate Gaussian distribution, or joint normal distribution is a generalization of the one-dimensional normal distribution to higher dimensions.
The multinomial distribution, a generalization of the binomial distribution. The multivariate normal distribution, a generalization of the normal distribution. The multivariate t-distribution, a generalization of the Student's t-distribution. The negative multinomial distribution, a generalization of the negative binomial distribution.
There is a set of probability distributions used in multivariate analyses that play a similar role to the corresponding set of distributions that are used in univariate analysis when the normal distribution is appropriate to a dataset. These multivariate distributions are: Multivariate normal distribution; Wishart distribution
The multivariate normal distribution is a special case of the elliptical distributions. As such, its iso-density loci in the k = 2 case are ellipses and in the case of arbitrary k are ellipsoids. Rectified Gaussian distribution a rectified version of normal distribution with all the negative elements reset to 0
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
Linear and graphical models for the multivariate complex normal distribution. Lecture Notes in Statistics 101. New York: Springer-Verlag. ISBN 978-0-387-94521-7. Billingsley, Patrick (1995). Probability and measure (3rd ed.). John Wiley & Sons. ISBN 978-0-471-00710-4. Bisgaard, T. M.; Sasvári, Z. (2000). Characteristic functions and moment ...
The probability density function for the random matrix X (n × p) that follows the matrix normal distribution , (,,) has the form: (,,) = ([() ()]) / | | / | | /where denotes trace and M is n × p, U is n × n and V is p × p, and the density is understood as the probability density function with respect to the standard Lebesgue measure in , i.e.: the measure corresponding to integration ...
The shape of a distribution will fall somewhere in a continuum where a flat distribution might be considered central and where types of departure from this include: mounded (or unimodal), U-shaped, J-shaped, reverse-J shaped and multi-modal. [1] A bimodal distribution would have two high points rather than one. The shape of a distribution is ...