Search results
Results from the WOW.Com Content Network
Cellular waste products are formed as a by-product of cellular respiration, a series of processes and reactions that generate energy for the cell, in the form of ATP. One example of cellular respiration creating cellular waste products are aerobic respiration and anaerobic respiration .
The systematic name of this enzyme class is naphthalene,NADH:oxygen oxidoreductase (1,2-hydroxylating). Other names in common use include naphthalene dioxygenase , and naphthalene oxygenase . This enzyme participates in 4 metabolic pathways : 1- and 2-methylnaphthalene degradation , naphthalene and anthracene degradation , fluorene degradation ...
Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from nutrients into ATP, and then release waste products. [1] Cellular respiration is a vital process that occurs in the cells of all [[plants and some bacteria ]].
Naphthalene is an organic compound with formula C 10 H 8. It is the simplest polycyclic aromatic hydrocarbon, and is a white crystalline solid with a characteristic odor that is detectable at concentrations as low as 0.08 ppm by mass. [15] As an aromatic hydrocarbon, naphthalene's structure consists of a fused pair of benzene rings.
Glucose reacts with oxygen in the following reaction, C 6 H 12 O 6 + 6O 2 → 6CO 2 + 6H 2 O. Carbon dioxide and water are waste products, and the overall reaction is exothermic. The reaction of glucose with oxygen releasing energy in the form of molecules of ATP is therefore one of the most important biochemical pathways found in living organisms.
Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. [2] Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidized for energy production.
Sodium naphthalene is an organic salt with the chemical formula Na + [C 10 H 8] −. In the research laboratory, it is used as a reductant in the synthesis of organic, organometallic, and inorganic chemistry. It is usually generated in situ. When isolated, it invariably crystallizes as a solvate with ligands bound to Na +. [1]
Glycolysis produces only 2 ATP molecules, but somewhere between 30 and 36 ATPs are produced by the oxidative phosphorylation of the 10 NADH and 2 succinate molecules made by converting one molecule of glucose to carbon dioxide and water, [6] while each cycle of beta oxidation of a fatty acid yields about 14 ATPs. These ATP yields are ...