enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Subgroup - Wikipedia

    en.wikipedia.org/wiki/Subgroup

    A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e} ). [2] [3] If H is a subgroup of G, then G is sometimes called an overgroup of H.

  3. Index of a subgroup - Wikipedia

    en.wikipedia.org/wiki/Index_of_a_subgroup

    Since the normal subgroup is a subgroup of H, its index in G must be n times its index inside H. Its index in G must also correspond to a subgroup of the symmetric group S n, the group of permutations of n objects. So for example if n is 5, the index cannot be 15 even though this divides 5!, because there is no subgroup of order 15 in S 5.

  4. Maximal subgroup - Wikipedia

    en.wikipedia.org/wiki/Maximal_subgroup

    Similarly, a normal subgroup N of G is said to be a maximal normal subgroup (or maximal proper normal subgroup) of G if N < G and there is no normal subgroup K of G such that N < K < G. We have the following theorem: Theorem: A normal subgroup N of a group G is a maximal normal subgroup if and only if the quotient G/N is simple.

  5. List of small groups - Wikipedia

    en.wikipedia.org/wiki/List_of_small_groups

    One of the non-abelian groups is the semidirect product of a normal cyclic subgroup of order p 2 by a cyclic group of order p. The other is the quaternion group for p = 2 and a group of exponent p for p > 2. Order p 4: The classification is complicated, and gets much harder as the exponent of p increases.

  6. Normal subgroup - Wikipedia

    en.wikipedia.org/wiki/Normal_subgroup

    By contrast, the subgroup of all rotations about the origin is not a normal subgroup of the Euclidean group, as long as the dimension is at least 2: first translating, then rotating about the origin, and then translating back will typically not fix the origin and will therefore not have the same effect as a single rotation about the origin.

  7. Core (group theory) - Wikipedia

    en.wikipedia.org/wiki/Core_(group_theory)

    A core-free subgroup is a subgroup whose normal core is the trivial subgroup. Equivalently, it is a subgroup that occurs as the isotropy subgroup of a transitive, faithful group action. The solution for the hidden subgroup problem in the abelian case generalizes to finding the normal core in case of subgroups of arbitrary groups.

  8. Subgroup series - Wikipedia

    en.wikipedia.org/wiki/Subgroup_series

    In mathematics, specifically group theory, a subgroup series of a group is a chain of subgroups: = = where is the trivial subgroup.Subgroup series can simplify the study of a group to the study of simpler subgroups and their relations, and several subgroup series can be invariantly defined and are important invariants of groups.

  9. Characteristic subgroup - Wikipedia

    en.wikipedia.org/wiki/Characteristic_subgroup

    A subgroup of H that is invariant under all inner automorphisms is called normal; also, an invariant subgroup. ∀φ ∈ Inn(G): φ(H) ≤ H. Since Inn(G) ⊆ Aut(G) and a characteristic subgroup is invariant under all automorphisms, every characteristic subgroup is normal. However, not every normal subgroup is characteristic.