Search results
Results from the WOW.Com Content Network
A substitution reaction (also known as single displacement reaction or single substitution reaction) is a chemical reaction during which one functional group in a chemical compound is replaced by another functional group. [1] Substitution reactions are of prime importance in organic chemistry.
Radical reactions with arenes typically present retrosynthetically as instances of nucleophilic aromatic substitution, [citation needed] because generating the aryl radical requires a strong (radical) leaving group. [3]: 686–687 One example is the Meerwein arylation.
Benzene is sufficiently nucleophilic that it undergoes substitution by acylium ions and alkyl carbocations to give substituted derivatives. Electrophilic aromatic substitution of benzene. The most widely practiced example of this reaction is the ethylation of benzene. Approximately 24,700,000 tons were produced in 1999. [73]
The mechanism of S N 2 reaction does not occur due to steric hindrance of the benzene ring. In order to attack the C atom, the nucleophile must approach in line with the C-LG (leaving group) bond from the back, where the benzene ring lies. It follows the general rule for which S N 2 reactions occur only at a tetrahedral carbon atom.
Heteroarenes are aromatic compounds, where at least one methine or vinylene (-C= or -CH=CH-) group is replaced by a heteroatom: oxygen, nitrogen, or sulfur. [3] Examples of non-benzene compounds with aromatic properties are furan, a heterocyclic compound with a five-membered ring that includes a single oxygen atom, and pyridine, a heterocyclic compound with a six-membered ring containing one ...
For example, the substituent may determine the mechanism to be an SN1 type reaction over a SN2 type reaction, in which case the resulting Hammett plot will indicate a rate acceleration due to an EDG, thus elucidating the mechanism of the reaction. Another deviation from the regular Hammett equation is explained by the charge of nucleophile.
An addition reaction is the reverse of an elimination reaction, in which one molecule divides into two or more molecules. For instance, the hydration of an alkene to an alcohol is reversed by dehydration. There are two main types of polar addition reactions: electrophilic addition and nucleophilic addition.
One example is the hydroxylation of benzene by Fenton's reagent. Many oxidation and reduction reactions in organic chemistry have free radical intermediates, for example the oxidation of aldehydes to carboxylic acids with chromic acid. Coupling reactions can also be considered radical substitutions.