Search results
Results from the WOW.Com Content Network
LIROS Dyneema hollow. Dyneema and Spectra are brands of lightweight high-strength oriented-strand gels spun through a spinneret. They have yield strengths as high as 2.4 GPa (350,000 psi) and density as low as 0.97 g/mL (0.035 lb/cu in) (for Dyneema SK75). [12]
M5 has a tensile strength of 4 GPa [1] to 9.5GPa. [2] Other aramids- (such as Kevlar and Twaron) or UHMWPE-fibres (such as Dyneema and Spectra) range from 2.2 to 3.9 GPa. [3]M5 has "very high levels" of fire resistance, flame retardancy, and chemical resistance, especially high for an organic fiber.
In tempered glasses, air jets are used to rapidly cool the top and bottom surfaces of a softened (hot) slab of glass. Since the surface cools quicker, there is more free volume at the surface than in the bulk melt. The core of the slab then pulls the surface inward, resulting in an internal compressive stress at the surface.
Dyneema Composite Fabric (DCF), also known as Cuben Fiber (CTF3), is a high-performance non-woven composite material used in high-strength, low-weight applications. It is constructed from a thin sheet of ultra-high-molecular-weight polyethylene ( UHMWPE , "Dyneema") laminated between two sheets of polyester .
To emphasize the point, consider the issue of choosing a material for building an airplane. Aluminum seems obvious because it is "lighter" than steel, but steel is stronger than aluminum, so one could imagine using thinner steel components to save weight without sacrificing (tensile) strength.
The incompressibility of a material is quantified by the bulk modulus B, which measures the resistance of a solid to volume compression under hydrostatic stress as B = −Vdp/dV. Here V is the volume, p is pressure, and dp/dV is the partial derivative of pressure with respect to the volume.
Kevlar (para-aramid) [2] is a strong, heat-resistant synthetic fiber, related to other aramids such as Nomex and Technora.Developed by Stephanie Kwolek at DuPont in 1965, [3] [2] [4] the high-strength material was first used commercially in the early 1970s as a replacement for steel in racing tires.
The chain molecules in the fibers are highly oriented along the fiber axis. As a result, a higher proportion of the chemical bond contributes more to fiber strength than in many other synthetic fibres in the world. Aramids have a very high melting point (>500 °C (932 °F)).