enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Difference quotient - Wikipedia

    en.wikipedia.org/wiki/Difference_quotient

    Difference quotients may also find relevance in applications involving Time discretization, where the width of the time step is used for the value of h. The difference quotient is sometimes also called the Newton quotient [10] [12] [13] [14] (after Isaac Newton) or Fermat's difference quotient (after Pierre de Fermat). [15]

  3. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The symmetric difference quotient is employed as the method of approximating the derivative in a number of calculators, including TI-82, TI-83, TI-84, TI-85, all of which use this method with h = 0.001. [2] [3]

  4. Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Quotient_rule

    In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and ()

  5. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    The finite difference of higher orders can be defined in recursive manner as Δ n h ≡ Δ h (Δ n − 1 h) . Another equivalent definition is Δ n h ≡ [T h − I ] n . The difference operator Δ h is a linear operator, as such it satisfies Δ h [ α f + β g ](x) = α Δ h [ f ](x) + β Δ h [g](x) . It also satisfies a special Leibniz rule:

  6. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The difference rule ) ... The quotient rule If f and g are ... Derivative calculator with formula simplification This page was last ...

  7. Discrete calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_calculus

    The process of finding the difference quotient is called differentiation. Given a function defined at several points of the real line, the difference quotient at that point is a way of encoding the small-scale (i.e., from the point to the next) behavior of the function.

  8. Differentiation of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of...

    In the last step we took the reciprocals of the three positive terms, reversing the inequities. Squeeze: The curves y = 1 and y = cos θ shown in red, the curve y = sin( θ )/ θ shown in blue. We conclude that for 0 < θ < ⁠ 1 / 2 ⁠ π, the quantity sin( θ )/ θ is always less than 1 and always greater than cos(θ).

  9. Generalizations of the derivative - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_the...

    The difference operator of difference equations is another discrete analog of the standard derivative. Δ f ( x ) = f ( x + 1 ) − f ( x ) {\displaystyle \Delta f(x)=f(x+1)-f(x)} The q-derivative, the difference operator and the standard derivative can all be viewed as the same thing on different time scales .